Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows

用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型

基本信息

  • 批准号:
    RGPIN-2019-06758
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With the significant improvements in numerical methods over the last 15-20 years and correspondoing increases high-performance computing (HPC) resources, computational fluid dynamics (CFD) has become an important enabling technology in science and engineering. However, despite these advances, there remain a variety of multi-scale, physically-complex flows that are still poorly understood and have proven to be very challenging to predict by computational methods. Such flows would include but are not limited to: (i) turbulent, reactive, and multi-phase flows encountered in advanced aerospace propulsion systems; (ii) high-speed flows of gases and conducting fluids and plasmas; and (iii) micro-scale and/or rarefied non-equilibrium flows. In order to enable the more routine solution of such flows in a predictive manner, further and rather significant advances in numerical methods and CFD algorithm design are required, along with improved mathematical models for the relevant physical processes. For the latter, mathematical models that offer significant reductions in the complexity while retaining solution fidelity would be extremely desirable. The proposed research will therefore focus on the development and application of novel, accurate, efficient, and robust adaptive solution methods and models for describing multi-scale physically-complex flows using HPC architectures. Key elements of the research will include: (i) the development of output-based anisotropic adaptive mesh refinement (AMR) techniques for complex geometries and interfaces using multi-block body-fitted and hybrid grids; (ii) the enhancement of high-order finite-volume and related flux-reconstruction spatial discretization methods coupled with complementary high-order temporal discretization schemes for improved solution accuracy; (iii) the development and efficient solution of improved mathematical models based on moment closures for various transport phenomena, including non-equilibrium gaseous and plasma flows, multi-phase atomization and spray formation, the formation, oxidation, and transport of nanoscale solid soot particulates, and radiative heat transfer in participating media; and (iv) the development and exploitation of a combination of parameter estimation, data-driven, and possibly data-assimilation techniques for both assessing and improving physical models and improving simulation predictions. The potential, capabilities, and performance of the proposed computational tools for multi-scale, physically-complex problems will be assessed through application to the prediction of reactive and multi-phase flows, non-equilibrium gaseous flows, as well as high-speed space plasma flows. The latter would include the simulation of space weather phenomena. The proposed research is expected to result in a more that one order of magnitude improvement in computational efficiency compared to existing methods, thereby enabling the simulation of a far wider range of flows.
随着过去 15-20 年数值方法的显着改进以及相应的高性能计算 (HPC) 资源的增加,计算流体动力学 (CFD) 已成为科学和工程领域的重要使能技术。然而,尽管取得了这些进步,仍然存在各种多尺度、物理复杂的流动,人们对这些流动仍然知之甚少,并且事实证明通过计算方法预测非常具有挑战性。此类流动包括但不限于: (i) 先进航空航天推进系统中遇到的湍流、反应性和多相流; (ii) 气体、导电流体和等离子体的高速流动; (iii) 微尺度和/或稀薄的非平衡流。为了能够以预测方式对此类流动进行更常规的解决,需要在数值方法和 CFD 算法设计方面取得进一步的重大进展,同时改进相关物理过程的数学模型。对于后者,能够显着降低复杂性同时保持解保真度的数学模型将是非常理想的。因此,拟议的研究将侧重于开发和应用新颖、准确、高效和鲁棒的自适应解决方案和模型,以使用 HPC 架构描述多尺度物理复杂流。该研究的关键要素将包括:(i)使用多块贴体和混合网格开发基于输出的各向异性自适应网格细化(AMR)技术,用于复杂的几何形状和界面; (ii) 增强高阶有限体积和相关通量重建空间离散化方法,并结合互补的高阶时间离散化方案,以提高求解精度; (iii) 基于各种传输现象的矩闭合的改进数学模型的开发和有效解决,包括非平衡气态和等离子流、多相雾化和喷雾形成、纳米级固体烟灰颗粒的形成、氧化和传输,以及参与介质中的辐射传热; (iv) 开发和利用参数估计、数据驱动和可能的数据同化技术的组合,用于评估和改进物理模型以及改进模拟预测。所提出的计算工具针对多尺度、物理复杂问题的潜力、能力和性能将通过应用于反应流和多相流、非平衡气流以及高速空间的预测来评估等离子体流。后者将包括空间天气现象的模拟。与现有方法相比,所提出的研究预计将导致计算效率提高一个数量级以上,从而能够模拟更广泛的流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Groth, Clinton其他文献

Groth, Clinton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Groth, Clinton', 18)}}的其他基金

Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

随机阻尼波动方程的高效保结构算法研究
  • 批准号:
    12301518
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于径向分级组织的氨气/二甲醚高效低污染燃烧机制及协同调控研究
  • 批准号:
    52306155
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耦合高效光吸收与载流子分离的Ta3N5梯度同质结的构建及太阳能水分解性能研究
  • 批准号:
    22309104
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于温盐对流强化的高效耐盐太阳能蒸馏机理研究
  • 批准号:
    52376200
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
低共熔溶剂的碱性调控及高效分离油酚混合物的机制研究
  • 批准号:
    22308216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developments in radiotherapy physics for accurate, efficient and robust radiation measurements and dose calculations
放射治疗物理学的发展,实现准确、高效和稳健的辐射测量和剂量计算
  • 批准号:
    RGPIN-2017-06253
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Developments in radiotherapy physics for accurate, efficient and robust radiation measurements and dose calculations
放射治疗物理学的发展,实现准确、高效和稳健的辐射测量和剂量计算
  • 批准号:
    RGPIN-2017-06253
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    2110145
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了