Stochastic Interacting Population Dynamics and Related Problems

随机相互作用的种群动态及相关问题

基本信息

  • 批准号:
    RGPIN-2021-04100
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Continuous-state branching process (CSBP for short) arises either from time-population scaling limit of the classical discrete-state Galton-Watson branching processes or from the Lamperti transform of a spectrally positive Lévy process stopped whenever reaching 0. Recent progresses have been made in introducing population models whose reproduction mechanisms depend on features of the entire populations. Among them a class of CSBPs with nonlinear branching mechanisms is introduced in Li (2019). They are obtained by generalized Lamperti type random time transformations from spectrally positive Lévy processes with general rate functions. Intuitively, the branching rate for such a process depends on its current population size. As a result, the additive branching property does not hold anymore and many standard methods for CSBPs fail. The nonlinear branching mechanism allows exotic properties such as coming down from infinity, which is investigated in detail in Foucart et al. (2020) with speeds of coming down from infinity identified for certain classes of rate functions. The boundary behaviors are also investigated in Li et al. (2019a) for more general nonlinear CSBPs. In the same spirit, Ren et al. (2019) propose and study a stochastic Lotka-Volterra population dynamics of two populations modeled by a system of two stochastic differential equations driven by independent Lévy noises, where both populations evolve according to nonlinear CSBPs of Li et al. (2019a) and the branching rates of the second population depend on the first population. We plan to continue with the study on the nonlinear CSBPs and the related interacting population systems. We are interested in the extinguishing behaviors of the nonlinear CSBP and want to know, when it occurs, how slowly the process approaches to 0. We also want to prove the strong Feller property for nonlinear CSBPs, which we believe will help to investigate the quasi-stationary distributions of the nonlinear CSBPs. We are going to further study the models in Li et al. (2019a) and the models in Ren et al. (2019). For the nonlinear CSBPs of Li et al. (2019a), a more challenging open problem is to establish sharp integral tests on boundary classification. For the stochastic population dynamics of Ren et al. (2019), we plan to introduce and study population models with two-way interactions. We also propose to explore the possibility of incorporating the spatial structures to study the similar behaviors for superprocesses and related SPDEs with mean field intersections. The proposed research helps to better understand the effects of interactions within and (or) between populations on the extreme behaviors of the population dynamics. In addition, since the boundary behaviors for general Markov processes and for solutions to general SDEs with jumps have not been systematically investigated, the proposed research is also expected to make significant contributions to the theory of stochastic processes.
连续状态分支过程(简称CSBP)要么源于经典离散状态Galton-Watson分支过程的时间总体标度极限,要么源于光谱正Lévy过程的Lamperti变换,每当达到0时就会停止。最近取得了进展Li (2019) 引入了种群模型,其繁殖机制取决于整个种群的特征,其中引入了一类具有非线性分支机制的 CSBP。具有一般速率函数的谱正 Lévy 过程的 Lamperti 型随机时间变换直观地讲,此类过程的分支率取决于其当前的总体规模,因此,加性分支属性不再成立,并且许多 CSBP 的标准方法都失败了。非线性分支机制允许奇异的特性,例如从无穷大下降,Foucart 等人(2020)对此进行了详细研究,并为某些类别的速率函数确定了从无穷大下降的速度。 Li 等人 (2019a) 也研究了更一般的非线性 CSBP,Ren 等人 (2019) 提出并研究了由系统建模的两个种群的随机 Lotka-Volterra 种群动态。由独立 Lévy 噪声驱动的两个随机微分方程,其中两个种群均根据 Li 等人 (2019a) 的非线性 CSBP 演化,并且第二个种群的分支率取决于第一个种群。我们计划继续研究非线性 CSBP 和相关的相互作用的总体系统。我们对非线性 CSBP 的消失行为很感兴趣,并想知道当它发生时,该过程接近 0 的速度有多慢。希望证明非线性 CSBP 的强 Feller 性质,我们相信这将有助于研究非线性 CSBP 的准平稳分布,我们将进一步研究 Li 等人 (2019a) 中的模型。对于 Ren 等人 (2019a) 的非线性 CSBP,一个更具挑战性的开放问题是针对 Ren 等人的随机总体动态建立尖锐的积分检验。 (2019),我们计划引入和研究具有双向相互作用的群体模型,我们还建议探索结合空间结构来研究具有平均场交叉的超级过程和相关 SPDE 的相似行为的可能性。有助于更好地理解群体内部和(或)群体之间的相互作用对群体动态极端行为的影响。此外,由于一般马尔可夫过程和具有跳跃的一般 SDE 的解决方案的边界行为尚未得到系统研究。拟议的研究预计还将对随机过程理论做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhou, Xiaowen其他文献

Research hotspots and emerging trends of deep learning applications in orthopedics: A bibliometric and visualized study
深度学习在骨科应用的研究热点和新兴趋势:文献计量和可视化研究
  • DOI:
    10.3389/fpubh.2022.949366
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Feng, Chengyao;Zhou, Xiaowen;Wang, Hua;He, Yu;Li, Zhihong;Tu, Chao
  • 通讯作者:
    Tu, Chao
Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges
深度学习在骨肿瘤中的新兴应用:当前进展和挑战
  • DOI:
    10.3389/fonc.2022.908873
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Zhou, Xiaowen;Wang, Hua;Feng, Chengyao;Xu, Ruilin;He, Yu;Li, Lan;Tu, Chao
  • 通讯作者:
    Tu, Chao
Efficacy of Poria cocos and Alismatis rhizoma against diet-induced hyperlipidemia in rats based on transcriptome sequencing analysis
  • DOI:
    10.1038/s41598-023-43954-6
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zhou, Xiaowen;Luo, Jingbiao;Lin, Shuxian;Wang, Yaxin;Yan, Zhenqian;Ren, Qi;Liu, Xiaoqi;Li, Xiantao
  • 通讯作者:
    Li, Xiantao
Dysfunction of the energy sensor NFE2L1 triggers uncontrollable AMPK signaling and glucose metabolism reprogramming
能量传感器 NFE2L1 的功能障碍会触发不受控制的 AMPK 信号传导和葡萄糖代谢重编程
  • DOI:
    10.1038/s41419-022-04917-3
  • 发表时间:
    2022-05-25
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Qiu, Lu;Yang, Qiufang;Zhao, Wenshan;Xing, Yadi;Li, Peng;Zhou, Xiaowen;Ning, Haoming;Shi, Ranran;Gou, Shanshan;Chen, Yalan;Zhai, Wenjie;Wu, Yahong;Li, Guodong;Chen, Zhenzhen;Ren, Yonggang;Gao, Yanfeng;Zhang, Yiguo;Qi, Yuanming
  • 通讯作者:
    Qi, Yuanming

Zhou, Xiaowen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhou, Xiaowen', 18)}}的其他基金

Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
  • 批准号:
    RGPIN-2021-04100
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
  • 批准号:
    RGPIN-2021-04100
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
  • 批准号:
    RGPIN-2016-06704
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

人口迁移与乡村转型发展耦合关系与互动机制研究-以浙江省为例
  • 批准号:
    41901202
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
基于人口空间互动的老年人服务设施的可达性和规划布局研究
  • 批准号:
    51308423
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
中部地区大城市人口空间分布与用地规划布局的互动关系研究
  • 批准号:
    51178357
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
中国特大城市人口-就业空间演化与互动机制研究
  • 批准号:
    41001069
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
新疆人口变动与环境演变的互动机制及其未来趋势
  • 批准号:
    40161008
  • 批准年份:
    2001
  • 资助金额:
    14.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
  • 批准号:
    10644300
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Determining the Interacting Effects of GBA, SNCA, and APOE on a-Synuclein Pathology Severity in Dementia with Lewy Bodies and Parkinson's Disease
确定 GBA、SNCA 和 APOE 对路易体痴呆和帕金森病的 a-突触核蛋白病理严重性的相互作用
  • 批准号:
    10603361
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
  • 批准号:
    RGPIN-2021-04100
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Computational algorithm to predict interacting MHC alleles from TCR sequences
从 TCR 序列预测相互作用的 MHC 等位基因的计算算法
  • 批准号:
    10384615
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
  • 批准号:
    RGPIN-2021-04100
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了