Problems in complex and harmonic analysis related to weighted norm inequalities

与加权范数不等式相关的复数和调和分析问题

基本信息

  • 批准号:
    RGPIN-2021-03545
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The applicant proposes to continue researching weighted norm inequalities for Calderon-Zygmund operators (CZOs), and their applications in quasiconformal maps, and Whitney extension problems. CZOs appear as natural tools when understanding the most critical cases of virtually all partial differential equations that describe our physical world, from Schrodinger operators in quantum mechanics to Navier-Stokes equations in fluid flow. Researching into two weight norm inequalities for these operators extends the applications and furthers our understanding of the individual operators under consideration, in ways that would remain completely obscure without this research. More specifically, the applicant and collaborators recently attained an important success by proving in a two-part paper (the applicant is a coauthor in part one) the well-known Nazarov-Treil-Volberg T1 conjecture for the 30+ year-old two weight problem for the Hilbert transform (the simplest non-trivial CZO). The resolution of this 1D problem opens the door for the (more flexible in applications) local Tb version, and higher dimensional versions. Crucial tools in the solution of the 1D case are missing in these versions, leaving enough room for further research, some of it to be performed with students. Another recent success in which weighted norm inequalities proved to be crucial was the solution, by the applicant and coauthors, of the 16-year-old conjecture of Astala regarding distortion of (Hausdorff measure of) sets under planar quasiconformal maps. These maps are good models for elasticity. Astala had understood how these maps distort area and planar sets of smaller dimension (e.g. 1D). But the fine properties of the distortion of the corresponding smaller measures (e.g. length) remained a mystery, which was solved with the type of weighted norm inequalities described above. Unfortunately, some of these tools are missing for the physically relevant 3D case, which the applicant proposes to study. However, enough intuition is given by the weighted inequality proof in 2D to adapt into a plan of attack in 3D. The applicant and collaborators' research on weighted norm inequalities gave rise to an unexpected application in Whitney extension problems. These classical "fitting a function to data" problems ask when a function, a priori only defined on a small set, can be viewed (extended) as defined (with good behaviour) in the whole space. This extension is a key step in many relevant problems to be able to apply the modern tools for the analysis of the partial differential equations governing physical phenomena. While understanding the Whitney extension problems for Sobolev spaces (these are the natural setting for the modern approach for partial differential equations), it turned out that certain tools from the applicant and collaborators' research on weighted norm inequalities appear as very promising and relevant. The applicant proposes to continue this line of research.
申请人建议继续研究卡尔德隆-齐格蒙德算子(CZO)的加权范数不等式及其在拟共形映射和惠特尼扩展问题中的应用。在理解描述我们物理世界的几乎所有偏微分方程(从量子力学中的薛定谔算子到流体流动中的纳维-斯托克斯方程)的最关键情况时,CZO 似乎是自然的工具。 对这些算子的两个权重范数不等式的研究扩展了应用,并加深了我们对所考虑的各个算子的理解,如果没有这项研究,这些方法将完全模糊。更具体地说,申请人和合作者最近在一篇由两部分组成的论文中(申请人是第一部分的合著者)证明了著名的 Nazarov-Treil-Volberg T1 猜想,针对 30 多年前的两个权重,取得了重要的成功。希尔伯特变换(最简单的非平凡 CZO)问题。这个一维问题的解决为(应用更灵活)本地 Tb 版本和更高维度的版本打开了大门。这些版本中缺少一维案例解决方案中的关键工具,为进一步研究留下了足够的空间,其中一些需要与学生一起进行。最近另一个被证明加权范数不等式至关重要的成功是申请人和合著者解决了 16 年前的阿斯塔拉猜想,该猜想涉及平面拟共形映射下集合的畸变(豪斯多夫测度)。这些图是很好的弹性模型。阿斯塔拉已经了解这些地图如何扭曲较小尺寸(例如一维)的面积和平面集。但是相应的较小度量(例如长度)的扭曲的精细特性仍然是一个谜,这可以通过上述加权范数不等式的类型来解决。不幸的是,对于申请人建议研究的物理相关的 3D 案例,其中一些工具缺失。然而,2D 中的加权不等式证明给出了足够的直觉,可以适应 3D 中的攻击计划。申请人和合作者对加权范数不等式的研究在惠特尼可拓问题中产生了意想不到的应用。这些经典的“将函数拟合到数据”问题询问何时可以将一个先验仅在小集合上定义的函数视为(扩展)为在整个空间中定义(具有良好的行为)。这种扩展是许多相关问题的关键一步,能够应用现代工具来分析控制物理现象的偏微分方程。在理解索博列夫空间的惠特尼可拓问题(这是现代偏微分方程方法的自然设置)的同时,事实证明,申请人和合作者关于加权范数不等式的研究中的某些工具似乎非常有前途和相关。申请人提议继续这一研究方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UriarteTuero, Ignacio其他文献

UriarteTuero, Ignacio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UriarteTuero, Ignacio', 18)}}的其他基金

Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

谐波减速器柔性关节多特征复杂非光滑特性的神经网络构建及传递误差补偿控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
计及大功率驱动的电力电子化复杂电力系统谐波耦合机理分析与抑制方法研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
复杂电网环境下并联有源滤器的补偿失效机理分析及谐波阻抗定制
  • 批准号:
    51807021
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
复杂电网环境下的闪变包络提取与参数在线检测方法研究
  • 批准号:
    51777061
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
基于矩阵增强的复杂噪声背景中谐波参数的超分辨率估计
  • 批准号:
    61362038
  • 批准年份:
    2013
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
  • 批准号:
    0400505
  • 财政年份:
    2004
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
  • 批准号:
    0457500
  • 财政年份:
    2004
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Nonhomogeneous Harmonic Analysis, Weights, and Applications to Problems in Complex Analysis and Operator Theory"
NSF/CBMS 数学科学区域会议 - “非齐次调和分析、权重以及在复分析和算子理论中问题的应用”
  • 批准号:
    0121284
  • 财政年份:
    2002
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了