Scanning Probe Microscopy development and applications for time resolved structure-function studies

扫描探针显微镜的开发和时间分辨结构功能研究的应用

基本信息

  • 批准号:
    RGPIN-2021-02666
  • 负责人:
  • 金额:
    $ 4.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Atomic force microscopy (AFM) is an ideal experimental platform for nanoscience and nanotechnology. It allows the imaging, manipulation and characterization of individual nanometer sized objects. In the past five years the focus of my research was on developing methods to measure the electronic properties of nanoscale systems. A particular aim was to develop time resolved measurement capabilities. We have succeeded in advancing AFM techniques to allow the determination of properties via spatially and time resolved AFM spectroscopy methods using electrostatic tip-sample interactions. We achieved the fastest ever reported time resolution by resolving a 100fs non-linear optical signal by AFM. A further major achievement was the measurement of the electron transfer process on a single molecule by AFM, allowing us to determine electron-phonon coupling, molecular vibration and reorganization energies. In the next 5 years the goal of my research program is to build on some of the recently achieved experimental breakthroughs and gain a fundamental understanding of the structure-function relation of nanoscale systems. Materials to be investigated have a long term potential for renewable energy generation, information storage or quantum information processing. A particular focus will be to investigate the role of defects and disorder on the dynamics of the process of interest. This research program provides a rich, interdisciplinary and world-class environment for the training of highly qualified personnel, develops new instrumentation and methods, addresses fundamental questions and has major application potential. Specifically, we plan to use our cryogenic AFM to characterize the charging and coupling energies of individual dopant atoms in silicon, relevant in quantum information. These efforts will be in collaboration with Prof. N. Curson at University College London. Similarly, we will investigate electron transfer in proteins to understand the detailed structure-function relation in biological charge funnel systems to elucidate general principles as input to biomimetic efforts to engineer efficient hydrogen and electricity generating materials. For this, we will collaborate with world-class theorists Profs. H. Guo and K. Bevan. We will develop spatially resolved non-linear optical measurements using AFM as a detector to investigate light-matter interactions, specifically in organic and 2 dimensional systems. We want to understand how size, order and defects in these systems determines conductivity and opto-electronic properties. By pumping the sample with 100 fs optical pulses we will generate excitons and ultimately free charges. The properties of these will be characterized by AFM with nanometer spatial and ultrafast time resolution using pump-probe and non-linear optics methods. Achieving this will open a wide new field of inquiry: studying the properties of individual structures in contrast to ensemble averaging.
原子力显微镜(AFM)是纳米科学和纳米技术的理想实验平台。它可以对单个纳米尺寸物体进行成像、操纵和表征。在过去的五年中,我的研究重点是开发测量纳米级系统电子特性的方法。一个特定的目标是开发时间分辨测量能力。我们成功地推进了 AFM 技术,利用静电针尖与样品相互作用,通过空间和时间分辨 AFM 光谱方法来确定特性。我们通过 AFM 解析 100fs 非线性光信号,实现了有史以来最快的时间分辨率。另一个主要成就是通过原子力显微镜测量单个分子上的电子转移过程,使我们能够确定电子-声子耦合、分子振动和重组能。 未来 5 年,我的研究计划的目标是在最近取得的一些实验突破的基础上,对纳米级系统的结构与功能关系有一个基本的了解。待研究的材料在可再生能源发电、信息存储或量子信息处理方面具有长期潜力。特别关注的是研究缺陷和无序对感兴趣过程动态的作用。该研究项目为高素质人才的培训提供了丰富的、跨学科的、世界一流的环境,开发新的仪器和方法,解决基本问题并具有重大应用潜力。具体来说,我们计划使用低温原子力显微镜来表征硅中单个掺杂剂原子的充电和耦合能量,这与量子信息相关。这些工作将与伦敦大学学院的 N. Curson 教授合作。同样,我们将研究蛋白质中的电子转移,以了解生物电荷漏斗系统中详细的结构功能关系,从而阐明一般原理,作为设计高效氢和发电材料的仿生努力的输入。为此,我们将与世界一流的理论家教授合作。 H.郭和K.Bevan。 我们将使用 AFM 作为探测器来开发空间分辨非线性光学测量,以研究光与物质的相互作用,特别是在有机和二维系统中。我们想要了解这些系统中的尺寸、顺序和缺陷如何决定导电性和光电特性。通过用 100 fs 光脉冲泵浦样品,我们将产生激子并最终产生自由电荷。这些特性将通过使用泵浦探针和非线性光学方法的具有纳米空间和超快时间分辨率的原子力显微镜来表征。实现这一目标将开辟一个广阔的新研究领域:研究个体结构与整体平均的特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grutter, Peter其他文献

Dynamics of presynaptic protein recruitment induced by local presentation of artificial adhesive contacts.
由人工粘附接触的局部呈现引起的突触前蛋白募集的动态。
  • DOI:
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Suarez, Fernando;Thostrup, Peter;Colman, David;Grutter, Peter
  • 通讯作者:
    Grutter, Peter
Rapid assembly of functional presynaptic boutons triggered by adhesive contacts.
由粘合接触触发的功能性突触前纽扣的快速组装。
  • DOI:
  • 发表时间:
    2009-10-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucido, Anna Lisa;Suarez Sanchez, Fernando;Thostrup, Peter;Kwiatkowski, Adam V;Leal;Gopalakrishnan, Gopakumar;Liazoghli, Dalinda;Belkaid, Wiam;Lennox, R Bruce;Grutter, Peter;Garner, Craig C;Colman, David R
  • 通讯作者:
    Colman, David R
Dynamics of presynaptic protein recruitment induced by local presentation of artificial adhesive contacts
人工粘附接触局部呈现诱导的突触前蛋白募集动态
  • DOI:
    10.1002/dneu.22037
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Suarez, Fernando;Thostrup, Peter;Colman, David;Grutter, Peter
  • 通讯作者:
    Grutter, Peter

Grutter, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grutter, Peter', 18)}}的其他基金

Scanning Probe Microscopy development and applications for time resolved structure-function studies
扫描探针显微镜的开发和时间分辨结构功能研究的应用
  • 批准号:
    RGPIN-2021-02666
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Scanning Probe Microscopy development and applications for time resolved structure-function studies
扫描探针显微镜的开发和时间分辨结构功能研究的应用
  • 批准号:
    RGPIN-2021-02666
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Canada-UK Quantum Technologies call: Scanning Probe Fabrication and Readout of Atomically Precise Silicon Quantum Technologies
加拿大-英国量子技术电话:扫描探针制造和原子精确硅量子技术的读出
  • 批准号:
    556313-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Alliance Grants
Canada-UK Quantum Technologies call: Scanning Probe Fabrication and Readout of Atomically Precise Silicon Quantum Technologies
加拿大-英国量子技术电话:扫描探针制造和原子精确硅量子技术的读出
  • 批准号:
    556313-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Alliance Grants
Scanning Probe Microscopy for fundamental studies in nanoscience
用于纳米科学基础研究的扫描探针显微镜
  • 批准号:
    RGPIN-2016-05033
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Scanning Probe Microscopy for fundamental studies in nanoscience
用于纳米科学基础研究的扫描探针显微镜
  • 批准号:
    RGPIN-2016-05033
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Canada-UK Quantum Technologies call: Scanning Probe Fabrication and Readout of Atomically Precise Silicon Quantum Technologies
加拿大-英国量子技术电话:扫描探针制造和原子精确硅量子技术的读出
  • 批准号:
    556313-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Alliance Grants
Canada-UK Quantum Technologies call: Scanning Probe Fabrication and Readout of Atomically Precise Silicon Quantum Technologies
加拿大-英国量子技术电话:扫描探针制造和原子精确硅量子技术的读出
  • 批准号:
    556313-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Alliance Grants
Scanning Probe Microscopy for fundamental studies in nanoscience
用于纳米科学基础研究的扫描探针显微镜
  • 批准号:
    RGPIN-2016-05033
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Scanning Probe Microscopy for fundamental studies in nanoscience
用于纳米科学基础研究的扫描探针显微镜
  • 批准号:
    RGPIN-2016-05033
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于双电性源聚焦的磁共振小异常高分辨率探测机理研究
  • 批准号:
    42304156
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于裂纹超声探测的栓钉多轴疲劳机理和结合面疲劳损伤演化规律研究
  • 批准号:
    52378181
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
微结构集成的狄拉克半金属太赫兹探测机理与器件研究
  • 批准号:
    62305077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双波段双极性自驱动光探测器性能与机理研究
  • 批准号:
    62375205
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
直接中子探测半导体6LiInP2Se6的晶体生长、微观结构与中子探测器研究
  • 批准号:
    52372011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Assessing image quality improvement of a new Scanning Probe Microscopy imaging mode.
评估新扫描探针显微镜成像模式的图像质量改进。
  • 批准号:
    10039804
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Collaborative R&D
Bruker Atomic Force Microscope NanoWizard® 5
布鲁克原子力显微镜 NanoWizard® 5
  • 批准号:
    10632932
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
PFI-TT: Active Acoustic Noise Cancellation and Control for Scanning Probe Microscopy
PFI-TT:扫描探针显微镜的主动声学噪声消除和控制
  • 批准号:
    2234449
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
Probing molecular interactions on soft surfaces by scanning probe microscopy
通过扫描探针显微镜探测软表面上的分子相互作用
  • 批准号:
    RGPIN-2020-05700
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
  • 批准号:
    10557917
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了