Efficient Decoding Method of Some Algebraic Geometry Codes

一些代数几何代码的高效解码方法

基本信息

  • 批准号:
    02650262
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

Recently a sequence of error-correcting codes that have good error-correction performance and high coding rate have been discovered using algebraic geometry and ideas of a russian coding theorist V. D. Goppa. These codes are a class of algebraic codes which are derived from algebraic curves over finite fields and are called algebraic geometry codes. Several investigators in Europe as well as in Japna have proposed decoding methods for some algebraic geometry codes quite recently. The computational complexties in most of these decoding methods are of the order of n^3 or more, where n is the code length. On the other hand, some investigators gave a fast algorithm by applying our 2D Berlekamp-Massey algorithm. The 2D Berlekamp-Massey algorithm which we proposed before solves th e 2D version of the problem treated by the (1D) Berlekamp-Massey algorithm, that is synthesis of 2D linear feedback shift register capable of generating a given finite 2D array. Both these algorithms in principle have the same computational complexity of the order of n^2, where n is the size of the given 1D or 2D array in this case. In the progression of this research we have revealed some more applications of our algorithm to decode several other algebraic geometry codes by making clear some novel aspects of the algorithm and by giving some new versions of it. We have shown that our methods can be applied to decode efficiently several new algebraic geometry codes which just have been discovered by other coding theorists. The computational complexities of our decoding methods are less than those of the previous methods. Furthermore, we have given several extensions of our algorithm to apply them to decode some other codes which have not been constructed yet but have the possibility of being invented.
最近,利用代数几何和俄罗斯编码理论家V. D. Goppa的思想,发现了一系列具有良好纠错性能和高编码率的纠错码。这些代码是一类代数代码,由有限域上的代数曲线导出,称为代数几何代码。最近,欧洲和日本的几位研究人员提出了一些代数几何代码的解码方法。大多数这些解码方法的计算复杂度为 n^3 或更高,其中 n 是代码长度。另一方面,一些研究人员通过应用我们的 2D Berlekamp-Massey 算法给出了一种快速算法。我们之前提出的 2D Berlekamp-Massey 算法解决了(1D)Berlekamp-Massey 算法所处理问题的 2D 版本,即能够生成给定有限 2D 数组的 2D 线性反馈移位寄存器的综合。原则上,这两种算法具有相同的 n^2 量级计算复杂度,其中 n 是本例中给定一维或二维数组的大小。在这项研究的进展中,我们通过阐明算法的一些新颖方面并给出它的一些新版本,揭示了我们的算法的更多应用,以解码其他几种代数几何代码。我们已经证明,我们的方法可以应用于有效地解码其他编码理论家刚刚发现的几种新的代数几何代码。我们的解码方法的计算复杂度低于以前的方法。此外,我们还给出了我们的算法的几种扩展,以将它们应用于解码其他一些尚未构造但有可能被发明的代码。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shojiro Sakata: "TwoーDimensional Shift Register Synthesis and Groebner Bases for Polynomial Ideals over an Integer Residue Ring" Proceedings of AAECCー7.
Shojiro Sakata:“整数残差环上多项式理想的二维移位寄存器综合和 Groebner 基”AAECC-7 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shojiro Sakata: "On Application of the 2D BerlekampーMassey Algorithm to Decoding Some Codes Defined on Algebraic Curves" 第13回情報理論とその応用シンポジウム予稿集. 469-472 (1991)
Shojiro Sakata:“应用二维 Berlekamp-Massey 算法解码代数曲线上定义的一些代码”第 13 届信息论及其应用研讨会论文集 469-472(1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shojiro Sakata: "Two-Dimensional Shift Register Synthesis and Groebner Bases for Polynomial Ideals over an Interger Residue Ring" Discrete Applied Mathematics. 33. 191-203 (1991)
Shojiro Sakata:“整数余环上多项式理想的二维移位寄存器综合和 Groebner 基”离散应用数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shojiro Sakata: "A Fast Version of the Modified Skorobogatov Vladut Algorithm to Decode Some Codes from Algebraic Curves" IEEE Transactions on Information Theory.
Shojiro Sakata:“用于从代数曲线解码某些代码的改进 Skorobogatov Vladut 算法的快速版本”IEEE 信息论交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shojiro Sakata: "Decoding Binary 2D Cyclic Codes by the 2D BerlekampーMassey Algorithm" IEEE Transactions on Information Theory. (1991)
Shojiro Sakata:“通过 2D Berlekamp-Massey 算法解码二进制 2D 循环码”IEEE 信息论汇刊 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKATA Shojiro其他文献

SAKATA Shojiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKATA Shojiro', 18)}}的其他基金

Fast decoding methods of algebraic geometry codes and generalized algebraic geometry codes
代数几何代码和广义代数几何代码的快速解码方法
  • 批准号:
    16560323
  • 财政年份:
    2004
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis of liner feedback shift register allowing give pairs of input and output arrays
线性反馈移位寄存器的综合允许给出输入和输出阵列对
  • 批准号:
    14550350
  • 财政年份:
    2002
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient List Decoding of Codes from Algebraic Curves
代数曲线代码的高效列表解码
  • 批准号:
    12650368
  • 财政年份:
    2000
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast GMD Decoding of Codes from Algebraic Curves
代数曲线代码的快速 GMD 解码
  • 批准号:
    10650354
  • 财政年份:
    1998
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast Parallel Implementation of Bounded-Distance Decoding of Codes from Argebraic Curves with Systolic Array Achitecture
脉动数组结构的代数曲线有界距离译码的快速并行实现
  • 批准号:
    08650424
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast Decodicng Method of Any One-Point Algebraic-Geometric Codes up to the Feng-Rao Bound
冯饶界任意单点代数几何码的快速译码方法
  • 批准号:
    06650412
  • 财政年份:
    1994
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

New constructions of designs, graphs and codes over finite fields based on finite geometry and algebraic methods
基于有限几何和代数方法的有限域上的设计、图形和代码的新构造
  • 批准号:
    17K14236
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topics in algebraic geometry codes
代数几何代码主题
  • 批准号:
    1403062
  • 财政年份:
    2014
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
CIF: Small: List Decoding for Algebraic Geometry Codes: Theoretical Analysis, Efficient Algorithms, Practical Implementation
CIF:小:代数几何代码的列表解码:理论分析、高效算法、实际实现
  • 批准号:
    0916492
  • 财政年份:
    2009
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Models of encoding and decoding via Grobner basis for algebraic geometry codes and multidimensional cyclic codes
基于 Grobner 基的代数几何码和多维循环码的编码和解码模型
  • 批准号:
    19760269
  • 财政年份:
    2007
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Explicit construction of algebraic geometry codes
代数几何代码的显式构造
  • 批准号:
    18540038
  • 财政年份:
    2006
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了