Waveform distortions of finite amplitude sound wave in a locally reacting tube

局部反应管中有限振幅声波的波形畸变

基本信息

  • 批准号:
    02650234
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

When sound propagates in a tube of rubber-like material, the wall yields to the internal pressure, and the consequent vibration of the wall results in the substantial generation of geometrical dispersion and inevitable sound energy dissipation. In particular, if the sound frequency coincides with the resonance frequency the wave energy is strongly absorbed. The present research describes the propagation of finite amplitude sound waves in such yielding tubes. Due to the nonlinearity of air, the initial waves generate plenty of harmonics and distort their waveforms. Since these harmonics, however, propagate with each corresponding speed, the resultant distortions might be seen in a different way from those that take place in an acoustically rigid tube, where the dissipation is negligibly weak.In the theory the assumption is made that only plane waves without any higher modes are propagating in a cylindrical tube. We also assume emphatically that the wall moves locally in response to the … More internal pressure and the small displacement in radial direction is linearly modeled as a single freedom of resonator which consists of a series of three mechanical elements; compliance, mass and mechanical resistance. At relatively high frequencies, the visco-elastic motion of wall propagating in the tube shell decays more fast by the internal friction for rubber materials, so the assumption of local reaction would be resonable, although not be rigorously satisfied. The nonlinear wave equation is derived from the basic governing equations for an inviscid gas. The energy dissipations due to the on wall effect and the classical and relaxational losses of sound are included in an ad hoc manner. Since it is difficult to solve the nonlinear wave equation analytically, the numerical calculation technique according to an ordinary finite difference scheme is used for giving insight into the evolution of the time domain waveform at various space points. In the case of low frequency excitation much below the resonance frequency, the wave equation is reduced to the Burgers- Korteweg-de Vries(BKdV) equation, which is known in the propagation of pressure disturnances in a relaxing medium and in a gas-liquid mixture. Less
当声音在橡胶类材料的管中传播时,壁屈服于内部压力,并且随之而来的壁的振动导致几何分散的大量产生和不可避免的声音能量耗散,特别是如果声音频率与 一致。目前的研究描述了有限振幅声波在这种屈服管中的传播,由于空气的非线性,初始波会产生大量谐波并使其失真。然而,由于这些谐波以每个相应的速度传播,因此所产生的失真可能与声学刚性管中发生的失真不同,在声学刚性管中,耗散可以忽略不计。在理论上,假设是:只有没有任何更高模式的平面波在圆柱形管中传播,我们还强调壁会响应内部压力而局部移动,并且径向方向上的小位移是线性的。建模为由一系列三个机械元件组成的单自由度谐振器;在相对较高的频率下,管壳中传播的粘弹性运动由于橡胶的内摩擦而衰减得更快。材料,因此局部反应的假设虽然是合理的,但不能严格满足非线性波动方程是从无粘性气体的基本控制方程推导出来的,这是由于壁面效应以及经典和松弛损失造成的。由于很难解析地求解非线性波动方程,因此使用根据普通有限差分格式的数值计算技术来深入了解不同空间点的时域波形的演变。在远低于共振频率的低频激励的情况下,波动方程被简化为 Burgers-Korteweg-de Vries(BKdV) 方程,该方程在松弛介质和介质中的压力扰动传播中是已知的。气液混合物较少。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Kamakura et.al: "Harmonic generation in finite amplitude sound beams from a rectangular aperture source." J.Acoust.Soc.Am.(1992)
T.Kamakura 等人:“来自矩形孔径源的有限振幅声束的谐波生成。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kamakura et.al.: "Waveform distortions of finite amplitude sound wave in an elastic tuke" Proc.of 12th International Symposium on Nonlinear Acoustics.Elsevier. 333-338 (1990)
T.Kamakura 等人:“弹性管中有限振幅声波的波形畸变”第 12 届国际非线性声学研讨会论文集。爱思唯尔。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kamakura and Y.Kumamoto: "Waveform distortions of finite amplitude sound wave in an elasic tube" Proceedings of 12th ISNA, edited by M.F. Hamilton and D.T. Blackstock, Elsevier. 333-338 (1990)
T.Kamakura 和 Y.Kumamoto:“弹性管中有限振幅声波的波形畸变”第 12 届 ISNA 会议记录,M.F. 编辑
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kamakura, M.Tani, Y.Kumamoto, and K.Ueda: "Harmonic generation in finite amplitude sound beams from a rectangular aperture source" J.Acoust.Soc.Am.91(6).
T.Kamakura、M.Tani、Y.Kumamoto 和 K.Ueda:“来自矩形孔径源的有限振幅声束的谐波生成”J.Acoust.Soc.Am.91(6)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kamakura et.al.: "Suitable modulation of the carrier ultrasound for a parametric loudspeaker" ACUSTICA. 73. 215-217 (1991)
T.Kamakura 等人:“参量扬声器的载波超声的适当调制”ACUSTICA。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAMAKURA Tomoo其他文献

KAMAKURA Tomoo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAMAKURA Tomoo', 18)}}的其他基金

Development of Environmental-adaptive Audio System UsingParametric Array Speaker
采用参数阵列扬声器的环境自适应音频系统的开发
  • 批准号:
    22360094
  • 财政年份:
    2010
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realization of Audio Guide System with High Articulation Using Super-directivity
利用超指向性实现高清晰度语音导览系统
  • 批准号:
    19310105
  • 财政年份:
    2007
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a high-directivity speaker system for improving sound environment
开发改善声音环境的高指向性扬声器系统
  • 批准号:
    15310117
  • 财政年份:
    2003
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Proposal and verification of sensitivity calibration methods for miniature hydrophones in the high frequency range
微型水听器高频灵敏度校准方法的提出与验证
  • 批准号:
    10650404
  • 财政年份:
    1998
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Temperature elevation, streaming, and self-action in sound beams
声束中的温度升高、流动和自作用
  • 批准号:
    08650063
  • 财政年份:
    1996
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

面向超长距离高空间分辨率光纤声波传感的相位复合调控群速度色散方法研究
  • 批准号:
    62375197
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于非厄密拓扑结构的宽谱无色散光群速度调控研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
色散光子器件中非局域效应对群速度的调控研究
  • 批准号:
    11804071
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
可调谐高精度光学分数阶傅里叶变换器基础研究
  • 批准号:
    61805046
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
宽谱太赫兹量子级联激光器频梳色散研究
  • 批准号:
    61875220
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of heavily impurity doped Q-carbon high-Tc superconductor by an adjusted pulsed laser annealing technique
调整脉冲激光退火技术开发重掺杂Q-碳高温超导体
  • 批准号:
    21H01624
  • 财政年份:
    2021
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a sticker visualizing exercise speed for the sports leader
为体育领袖开发可视化运动速度的贴纸
  • 批准号:
    19K20389
  • 财政年份:
    2019
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient production of camptothecin by Ophiorrhiza pumila under controlled environmental
受控环境下蛇根高效生产喜树碱
  • 批准号:
    17K08018
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing the origin of dark gas around molecular clouds using the velocity-dispersion method
使用速度色散法揭示分子云周围暗气体的起源
  • 批准号:
    26287030
  • 财政年份:
    2014
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of optimum drying condition corresponding to characteristics of fruit and vegetables for promotion of sixth sector industrialization
阐明适合果蔬特性的最佳干燥条件,促进第六产业产业化
  • 批准号:
    26850156
  • 财政年份:
    2014
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了