Theoretical and Computer-Simulation Studies for Correlational Properties of Dense Hydrogen Plasmas
浓氢等离子体相关性质的理论和计算机模拟研究
基本信息
- 批准号:63580002
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1988
- 资助国家:日本
- 起止时间:1988 至 1989
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On the basis of the hypernetted-chain (HNC) approximation for the classical ion-ion correlation and the modified-convolution approximation (MCA) for the quantum-mechanical electron-electron and electron-ion correlations, we analyzed the correlational properties of dense hydrogen plasmas through an integral-equation approach. Physical significance of the electron-ion strong coupling effects beyond the RPA treatment was elucidated through investigation of the correlation functions, the thermodynamic functions and the transport coefficients. in those density and temperature regions near the metal-insulator boundary, we found that the behaviors of the correlation functions, the thermo-dynamic functions and the transport coefficients exhibited features remarkably analogous to those observed in an atomic insulator phase.Energy levels of impurity ions C^<5+> and Ne^<9+> embedded in dense hydrogen plasmas were analyzed by adopting specific model descriptions for those radiator atoms. The average polarization of surrounding plasmas was described through solution to the HNC/MCA integral equations. Through comparison between model calculations, we found that the atomic potentials felt by the bound electrons were elevated when the interparticle strong coupling effects and the penetration effects of the plasma particles inside the bound-electron orbitals were taken into account; the resulting energy levels became shallower and the higher levels vanished.Those two results above are essential ingredients in studying the metal-insulator transition in dense hydrogen system.
在经典离子-离子关联的超网链(HNC)近似和量子力学电子-电子和电子-离子关联的改进卷积近似(MCA)的基础上,我们分析了稠密氢的关联性质通过积分方程方法获得等离子体。通过研究相关函数、热力学函数和输运系数,阐明了 RPA 处理之外的电子-离子强耦合效应的物理意义。在金属-绝缘体边界附近的密度和温度区域中,我们发现相关函数、热力学函数和输运系数的行为表现出与原子绝缘体相中观察到的非常相似的特征。杂质离子的能级通过对这些辐射原子采用特定的模型描述,对嵌入在致密氢等离子体中的C^<5+>和Ne^<9+>进行了分析。周围等离子体的平均极化通过求解 HNC/MCA 积分方程来描述。通过模型计算对比发现,当考虑粒子间强耦合效应和等离子体粒子在束缚电子轨道内的穿透效应时,束缚电子感受到的原子势升高;由此产生的能级变得更浅,更高的能级消失。上述两个结果是研究稠密氢系统中金属-绝缘体转变的重要组成部分。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. Ogata: "Observation of Layered Structures and Laue Patterns in Coulomb Glasses" Physical Review Letters 62, 2293-2296 (1989).
S. Ogata:“库仑玻璃中层状结构和劳厄图案的观察”物理评论快报 62, 2293-2296 (1989)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
X.-Z.Yan: "Electron-Ion Strong Coupling Effects in Dense Hydrogen Plasmas I.Correlation Functions,Equation of State,and Transport Coefficients"
X.-Z.Yan:“稠密氢等离子体中的电子-离子强耦合效应I.相关函数、状态方程和输运系数”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
X.-Z. Yan: "in“Strongly Coupled Plasma Physics" Proc. 24th Yamada Conf." North-Holland,Amsterdam, (1990)
X.-Z. Yan:“强耦合等离子体物理学”Proc. 24th Yamada Conf.,北荷兰,阿姆斯特丹,(1990)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Tanaka: "Strongly Coupled Plasma Physics: Proc. 24th Yamada Conf." North-Holland, Amsterdam, (1990).
S. Tanaka:“强耦合等离子体物理学:第 24 届山田会议论文集”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Shigenori其他文献
TANAKA Shigenori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Shigenori', 18)}}的其他基金
Development for Advanced and Practical Application of Spatial Measurement Technology Using Laser Scanner Equipped UAV
使用配备激光扫描仪的无人机进行空间测量技术的先进和实际应用的开发
- 批准号:
18H01563 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of theoretical methods for interaction analysis of protein-ligand systems in computational drug design
计算药物设计中蛋白质-配体系统相互作用分析理论方法的发展
- 批准号:
26460035 - 财政年份:2014
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
First-principles simulations of water on the basis of quantum Monte Carlo and fragment molecular orbital methods
基于量子蒙特卡罗和碎片分子轨道方法的水的第一性原理模拟
- 批准号:
23540451 - 财政年份:2011
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of three dimension structure of the cardiac nerves and branches and of liver- distributing arteries in the adults and embryos of human and muskrat beavers, using our unique technology and whole mount in situ hybridication
使用我们独特的技术和整体原位杂交,阐明人类和麝香海狸成体和胚胎中心脏神经和分支以及肝脏分布动脉的三维结构
- 批准号:
18590164 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep observational researches regarding the profound structures, morphogenesis and regeneration of nerves, bloods and muscles existing in the visceral internal organs as well as four limbs, using sui genesis technology of whole-mount staining, and molecul
利用整体染色、分子生物学等独特成因技术,对内脏、四肢等神经、血液、肌肉的深层结构、形态发生和再生进行深入观察研究
- 批准号:
16590139 - 财政年份:2004
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pursuit and Elucidation of the Morphogenesis of Branchial Nerve, Blood Vessels and Visceral Organs, Applying Whole-mount Immunostaining and Biochisto-as well as Biochemical Staining Methods
应用整体免疫染色和 Biochisto 以及生化染色方法探索和阐明鳃神经、血管和内脏器官的形态发生
- 批准号:
14570008 - 财政年份:2002
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional analysis of the morphogenesis of nerve branches and vessels distributed to the heart and bronchial organs of embryos, using whole-mount immunohistochemical staining and moleculohistoochemical methods.
使用整体免疫组织化学染色和分子组织化学方法对分布到胚胎心脏和支气管器官的神经分支和血管的形态发生进行三维分析。
- 批准号:
12670010 - 财政年份:2000
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Three-dimensional Morphological Study on the Development of Nerves, Vessels and Muscles in the Branchial Organs
鳃器官神经、血管和肌肉发育的三维形态学研究
- 批准号:
10670010 - 财政年份:1998
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A THREE-DIMENSIONAL STUDY ON THE DEVELOPMENT OF THE NERVES,VESSELS AND THE MUSCLES IN THE CHICK AND MAMMALIAN EMBRYOS USING A WHOLE MOUNT-IMMUNOHISTOCHEMICAL STAINING
免疫组织化学染色法对鸡和哺乳动物胚胎神经、血管和肌肉发育的三维研究
- 批准号:
07670006 - 财政年份:1995
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
奇异摄动积分方程和积分微分方程的hp型Galerkin方法
- 批准号:12301468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂粘性流体模拟中的积分方程方法研究
- 批准号:12301515
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于特征基函数的准确高效电磁散射积分方程方法研究
- 批准号:62371228
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高振荡Volterra积分方程及积分微分方程的数值方法研究
- 批准号:12301502
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有竞争特征的非线性积分微分方程的动力学研究
- 批准号:12371174
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on new accurate boundary integral equation based on consideration of the complex fictitious eigenfrequencies
基于复虚拟特征频率的新型精确边界积分方程研究
- 批准号:
19K20285 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simultaneous occurrence of explosion and extinction in spatial evolutionary game for rapid movement of population
种群快速流动的空间演化博弈中爆炸与灭绝同时发生
- 批准号:
19K03641 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical studies on the mechanism of the electrode interfacial phenomena by the integral equation with first-principles calculation
第一性原理计算积分方程理论研究电极界面现象机理
- 批准号:
18K05307 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)