Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
基本信息
- 批准号:543433-2019
- 负责人:
- 金额:$ 5.83万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern jet engines are some of the most expensive components on an aircraft and are engineered to be extremely reliable at great cost (up to $25 million per engine). Yet they can still experience unexpected catastrophic failure, resulting in tragedy and loss of life. In order to monitor engine health and performance, each engine is equipped with about 100 sensors that measure engine performance parameters, from pressure and temperature of the engine gas path to vibration of the rotating components. The goals of the proposed collaborative research are to develop novel mathematical and statistical methods that exploit new sensing capabilities on engines for (i) constructing new anomaly-detection schemes and quickest-change detection algorithms; and (ii) discovering instability limits, thus preventing damage to engine components and lengthening their life-span. The research proposed here uses both model-based and data-driven theories to develop efficient numerical algorithms for quickest change detection, statistical learning and nonlinear filtering targeted at our specific problem.
Theme 1, the proposed quickest-change detection, will be a vital procedure for engine performance monitoring. Once a change in an engine state has occurred, that change must be detected as soon as possible, while minimizing false detections. Theme 2 of the proposal focuses on the data-driven methods appropriate for data generated by jet engines. When no explicit dynamical model is available, system knowledge boils down to real-time measurements, possibly complemented by process history. Advances made in collaboration with the industry partner, TECSIS Corporation, will have a lasting impact on the Prognosis and Health Management (PHM) techniques for detecting abrupt changes or anomalies in gas turbine engines. The proposed data-centric methods will benefit the aerospace industry at large as well as open new research perspectives and domains that rely heavily on measurements for system monitoring and control.
现代喷气发动机是飞机上最昂贵的部件之一,其设计成本极高(每台发动机高达 2500 万美元),极其可靠。然而,他们仍然可能会经历意想不到的灾难性失败,导致悲剧和生命损失。为了监测发动机的健康状况和性能,每台发动机都配备了约 100 个传感器,用于测量发动机性能参数,从发动机气路的压力和温度到旋转部件的振动。拟议的合作研究的目标是开发新颖的数学和统计方法,利用发动机上的新传感功能:(i)构建新的异常检测方案和最快变化检测算法; (ii) 发现不稳定极限,从而防止发动机部件损坏并延长其使用寿命。这里提出的研究使用基于模型和数据驱动的理论来开发有效的数值算法,以针对我们的具体问题进行最快的变化检测、统计学习和非线性过滤。
主题 1,建议的最快变化检测,将成为发动机性能监控的重要程序。一旦发动机状态发生变化,必须尽快检测到该变化,同时最大限度地减少错误检测。该提案的主题 2 重点关注适用于喷气发动机生成的数据的数据驱动方法。当没有明确的动态模型可用时,系统知识可以归结为实时测量,并可能通过过程历史记录进行补充。与行业合作伙伴 TECSIS Corporation 合作取得的进步将对用于检测燃气涡轮发动机突变或异常的预测和健康管理 (PHM) 技术产生持久影响。所提出的以数据为中心的方法将使整个航空航天业受益,并开辟严重依赖系统监测和控制测量的新研究视角和领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Namachchivaya, NavaratnamSri其他文献
Namachchivaya, NavaratnamSri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Namachchivaya, NavaratnamSri', 18)}}的其他基金
Development of Data-driven Decision Support System using Deep Learning Techniques
利用深度学习技术开发数据驱动的决策支持系统
- 批准号:
568573-2021 - 财政年份:2021
- 资助金额:
$ 5.83万 - 项目类别:
Alliance Grants
Development of Data-driven Decision Support System using Deep Learning Techniques
利用深度学习技术开发数据驱动的决策支持系统
- 批准号:
568573-2021 - 财政年份:2021
- 资助金额:
$ 5.83万 - 项目类别:
Alliance Grants
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
- 批准号:
543433-2019 - 财政年份:2019
- 资助金额:
$ 5.83万 - 项目类别:
Collaborative Research and Development Grants
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
- 批准号:
543433-2019 - 财政年份:2019
- 资助金额:
$ 5.83万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
基于振型平移与振型转角改变的框架结构损伤检测研究
- 批准号:51278214
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
FcεRIα基因、mRNA和蛋白表达改变与过敏性疾病相关性分析及检测方法建立
- 批准号:30972824
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
中药制剂工艺有无实质性改变的快速检测
- 批准号:30600824
- 批准年份:2006
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于异常信号建模的多模医学图像形变配准理论研究
- 批准号:60402021
- 批准年份:2004
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
磁共振波谱和灌注技术检测肝癌介入治疗后代谢改变的实验研究
- 批准号:30470503
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
- 批准号:
2334898 - 财政年份:2024
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
- 批准号:
2334897 - 财政年份:2024
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
- 批准号:
543433-2019 - 财政年份:2019
- 资助金额:
$ 5.83万 - 项目类别:
Collaborative Research and Development Grants
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
- 批准号:
543433-2019 - 财政年份:2019
- 资助金额:
$ 5.83万 - 项目类别:
Collaborative Research and Development Grants
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
- 批准号:
1513373 - 财政年份:2015
- 资助金额:
$ 5.83万 - 项目类别:
Continuing Grant