Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
基本信息
- 批准号:RGPIN-2019-04197
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network design, network flows, and graph connectivity are core topics in Theoretical Computer Science, Operations Research, and Combinatorial Optimization. Important algorithmic and structural paradigms were developed in the context of these topics, such as the greedy algorithm for minimum spanning trees and the max-flow min-cut theorem for network flows. Moreover, these topics arise in many practical contexts such as the design of fault-tolerant communication networks, congestion control for road traffic, and the analysis of social networks. Many of the problems arising in practical contexts are NP-hard. This means that optimal solutions cannot be computed in a reasonable running time, modulo the P .not.= NP conjecture. Hence, research has focused on approximation algorithms, i.e., efficient algorithms that find solutions that are within a guaranteed factor of the optimal solution.******In the design and analysis of approximation algorithms, I am using methods such as: algorithms and theory from combinatorial optimization (in particular, matchings and network flows), rounding of linear-programming relaxations, the primal-dual method, lift-and-project methods, and dynamic programming.******I plan to attack some outstanding open questions in network design jointly with my graduate students and co-authors, building on my recent major advances and journal publications.******Three key modules of my research program are summarized below.******(A) Network Design for Node-Connectivity Requirements******A basic problem in network design, called the NC-SNDP, is to find a minimum-cost sub-network H of a given network G such that H satisfies some prespecified NODE-connectivity requirements. I am attacking (with my grad students) a fundamental open problem: design an approximation algorithm for NC-SNDP whose guarantee is independent of the number of nodes/edges/terminals of the network G.******(B) Thin trees and the Traveling Salesman Problem (TSP)******The thinness parameter of a spanning tree T is the maximum over all cuts of the proportion of the edges of T in the cut. Goddyn conjectured that for any required thinness, a graph of sufficiently large edge-connectivity has a spanning tree with that thinness. An algorithmic (poly-time) proof would give major advances on approximation algorithms for ATSP. My long-term goal is such a proof. I am designing (with my grad students) efficient algorithms for finding thin spanning trees in special classes of graphs.******(C) Lift-and-Project Systems for Combinatorial Optimization******A key open question in the area is to improve on the approximation guarantee of two for the minimum-cost 2-edge connected spanning subgraph (2-ECSS) problem. My immediate goal is to derive an approximation guarantee better than two for a special case of this problem called the Forest Augmentation Problem (FAP) relative to a relaxation of FAP obtained via Lift-and-Project methods. This will generalize results that I have published with Gao (my completed Ph.D. student).**
网络设计、网络流和图连接是理论计算机科学、运筹学和组合优化的核心主题。重要的算法和结构范例是在这些主题的背景下开发的,例如最小生成树的贪婪算法和网络流的最大流最小割定理。此外,这些主题出现在许多实际环境中,例如容错通信网络的设计、道路交通拥塞控制以及社交网络分析。实际情况中出现的许多问题都是 NP 困难的。这意味着无法在合理的运行时间内计算出最优解,以 P .not.= NP 猜想为模。因此,研究的重点是近似算法,即找到在最优解的保证因子内的解决方案的有效算法。******在近似算法的设计和分析中,我使用的方法包括:算法和组合优化理论(特别是匹配和网络流)、线性规划松弛的舍入、原对偶方法、提升和投影方法以及动态规划。******我计划攻击一些与我一起解决网络设计中的突出开放问题研究生和合著者,以我最近的主要进展和期刊出版物为基础。******我的研究计划的三个关键模块总结如下。******(A) 节点连接要求的网络设计****** 网络设计中的一个基本问题,称为 NC-SNDP,是找到给定网络 G 的最小成本子网 H,使得 H 满足一些预先指定的节点连接要求。我正在(和我的研究生)解决一个基本的开放问题:为 NC-SNDP 设计一个近似算法,其保证独立于网络的节点/边/终端的数量 G.******(B) Thin树和旅行商问题(TSP)*****生成树 T 的稀疏参数是所有割中 T 的边在割中所占比例的最大值。 Goddyn 推测,对于任何所需的稀疏性,足够大的边连通性图都具有具有该稀疏性的生成树。算法(多时间)证明将为 ATSP 的近似算法带来重大进步。我的长期目标就是这样的证明。我正在(与我的研究生)设计有效的算法,用于在特殊类别的图中查找稀疏生成树。******(C) 用于组合优化的提升和投影系统******一个关键的开放问题该领域的目标是改进最小成本2边连通生成子图(2-ECSS)问题的两个近似保证。我的近期目标是针对称为森林增强问题 (FAP) 的问题的特殊情况,相对于通过提升和投影方法获得的 FAP 松弛,得出优于 2 的近似保证。这将概括我与高(我的已完成博士生)发表的结果。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheriyan, Joseph其他文献
Consensus Recommendations on the Use of 18F-FDG PET/CT in Lung Disease.
关于在肺部疾病中使用 18F-FDG PET/CT 的共识建议。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chen, Delphine L;Ballout, Safia;Chen, Laigao;Cheriyan, Joseph;Choudhury, Gourab;Denis;Emond, Elise;Erlandsson, Kjell;Fisk, Marie;Fraioli, Francesco;Groves, Ashley M;Gunn, Roger N;Hatazawa, Jun;Holman, Beverley F;Hutton, Brian - 通讯作者:
Hutton, Brian
Low-dose interleukin 2 for the reduction of vascular inflammation in acute coronary syndromes (IVORY): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase II clinical trial
低剂量白介素 2 用于减少急性冠状动脉综合征 (IVORY) 中的血管炎症:随机、双盲、安慰剂对照 II 期临床试验的方案和研究原理
- DOI:
10.1136/bmjopen-2022-062602 - 发表时间:
2022-10-07 - 期刊:
- 影响因子:2.9
- 作者:
Sriranjan, Rouchelle;Zhao, Tian Xiao;Tarkin, Jason;Hubsch, Annette;Helmy, Joanna;Vamvaka, Evangelia;Jalaludeen, Navazh;Bond, Simon;Hoole, Stephen P.;Knott, Philip;Buckenham, Samantha;Warnes, Victoria;Bird, Nick;Cheow, Heok;Templin, Heike;Cacciottolo, Paul;Rudd, James H. F.;Mallat, Ziad;Cheriyan, Joseph - 通讯作者:
Cheriyan, Joseph
Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells
低剂量 IL-2 增强产生 IL-10 的免疫调节 B 细胞的产生
- DOI:
10.1038/s41467-023-37424-w - 发表时间:
2023-04-12 - 期刊:
- 影响因子:16.6
- 作者:
Inaba, Akimichi;Tuong, Zewen Kelvin;Zhao, Tian X. X.;Stewart, Andrew P. P.;Mathews, Rebeccah;Truman, Lucy;Sriranjan, Rouchelle;Kennet, Jane;Saeb-Parsy, Kourosh;Wicker, Linda;Waldron-Lynch, Frank;Cheriyan, Joseph;Todd, John A. A.;Mallat, Ziad;Clatworthy, Menna R. R. - 通讯作者:
Clatworthy, Menna R. R.
Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial.
低剂量白介素 2 治疗稳定型缺血性心脏病和急性冠脉综合征 (LILACS) 患者:随机、双盲、安慰剂对照 I/II 期临床试验的方案和研究原理。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.9
- 作者:
Zhao, Tian Xiao;Kostapanos, Michalis;Griffiths, Charmaine;Arbon, Emma L;Hubsch, Annette;Kaloyirou, Fotini;Helmy, Joanna;Hoole, Stephen P;Rudd, James H F;Wood, Graham;Burling, Keith;Bond, Simon;Cheriyan, Joseph;Mallat, Ziad - 通讯作者:
Mallat, Ziad
Quantification of Lung PET Images: Challenges and Opportunities.
肺部 PET 图像的量化:挑战和机遇。
- DOI:
- 发表时间:
2017-02 - 期刊:
- 影响因子:0
- 作者:
Chen, Delphine L;Cheriyan, Joseph;Chilvers, Edwin R;Choudhury, Gourab;Coello, Christopher;Connell, Martin;Fisk, Marie;Groves, Ashley M;Gunn, Roger N;Holman, Beverley F;Hutton, Brian F;Lee, Sarah;MacNee, William;Mohan, Divya;Parr, David;Subr - 通讯作者:
Subr
Cheriyan, Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheriyan, Joseph', 18)}}的其他基金
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation algorithms for NP-hard problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2014-04351 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation algorithms for NP-hard problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2014-04351 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation algorithms for NP-hard problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2014-04351 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation algorithms for NP-hard problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2014-04351 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向NP难的进化算法理论—近似性能与随机运行时间分析
- 批准号:61906062
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
矩形布局问题的全局搜索关键技术
- 批准号:61862027
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
随机组合优化算法与复杂性研究
- 批准号:61772297
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
核心化算法中的新技术研究
- 批准号:61772115
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
难解问题的固定参数近似算法研究
- 批准号:61572190
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual