Nonparametric statistical inference under complex temporal dynamics

复杂时间动态下的非参数统计推断

基本信息

  • 批准号:
    RGPIN-2015-04927
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The last two decades have witnessed an enormous increase in the need for analyzing data with complex temporal dynamics. In particular, two types of time series data structures are of drastically growing interests in both theory and practice. First, it is evident that the temporal dependence structures and marginal distributions of many time series data change both abruptly and smoothly over time. Second, for many long and densely observed time series data, it is mathematically elegant and beneficial to separate the time record into natural consecutive intervals and treat the data as functional time series. ***The proposed research is aimed at providing a systematic package of statistical methodologies and theory for the modelling, estimation, inference and prediction of the aforementioned two types of complex structured time series in a unified framework of nonlinear system representation. Methodologically, we will develop efficient and adaptive nonparametric procedures for the analysis of general classes of non-stationary and/or functional valued time series with rigorous mathematical justifications. These include but are not limited to robust, multiscale and adaptive abrupt change detection in non-stationary (functional) time series; efficient and robust simultaneous confidence bands for nonparametric regression of non-stationary time series; uniform inference of both sparsely and densely observed functional time series and efficient  simultaneous nonparametric inference of time-varying spectral densities. Theoretically, a systematic statistical theory for non-stationary time series with diverging dimensionality will be developed, which provides a mathematical foundation for most of the research topics mentioned above. In particular, systematic empirical process theory and Gaussian approximation theory will be established for a wide class of non-stationary time series with diverging dimensionalities in the proposed research. ***Nowadays, technological innovations have made it possible to collect massive amount of data with complex structures over a relatively long period of time. I see a great demand, opportunity and challenge for statistical analysis of non-stationary time series with or without functional forms. Indeed, statistical theory and methodologies should progress with the trend of the data. However, a unified statistical theory for non-stationary time series analysis is still lacking due to the lack of appropriate statistical and probabilistic tools. I believe that the proposed framework from the nonlinear system point of view will provide an important theoretical and methodological basis for non-stationary (functional) time series analysis in many scientific disciplines.**
在过去的二十年里,对具有复杂时间动态的数据进行分析的需求急剧增加,特别是,两种类型的时间序列数据结构在理论和实践中都引起了极大的兴趣。其次,对于许多长期且密集观察的时间序列数据,将时间记录分成自然连续间隔并将数据视为函数在数学上是优雅且有益的。时间序列。 ***本研究旨在为在统一的非线性系统表示框架中对上述两类复杂结构时间序列进行建模、估计、推理和预测提供一套系统的统计方法和理论。开发高效和自适应的非参数程序,用于分析一般类别的非平稳和/或函数值时间序列,并具有严格的数学论证,其中包括但不限于稳健的、多尺度的和自适应的突变检测。非平稳(函数)时间序列;用于非平稳时间序列的非参数回归的高效且稳健的同步置信带;稀疏和密集观察的函数时间序列的统一推理以及时变谱密度的高效同步非参数推理。将发展具有不同维度的非平稳时间序列的系统统计理论,为上述大多数研究课题提供数学基础。在所提出的研究中,将针对各种不同维度的非平稳时间序列建立系统的经验过程理论和高斯近似理论***如今,技术创新使得收集大量具有复杂结构的数据成为可能。在相当长的一段时间内,我看到了对具有或不具有函数形式的非平稳时间序列的统计分析的巨大需求、机遇和挑战。事实上,统计理论和方法应该随着数据的趋势而进步。然而,由于缺乏适当的统计和概率工具,非平稳时间序列分析仍然缺乏统一的统计理论,我相信从非线性系统的角度提出的框架将为非平稳时间序列分析提供重要的理论和方法基础。 -许多科学学科中的平稳(函数)时间序列分析。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhou, Zhou其他文献

Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes
时间平衡——一维扩散过程的不一致停止
  • DOI:
    10.1111/mafi.12385
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Bayraktar, Erhan;Wang, Zhenhua;Zhou, Zhou
  • 通讯作者:
    Zhou, Zhou
TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2.
TRIM47 是一种新型内皮激活因子,可通过 K63 连接的 TRAF2 泛素化加重脂多糖诱导的小鼠急性肺损伤。
  • DOI:
  • 发表时间:
    2022-05-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qian, Yisong;Wang, Ziwei;Lin, Hongru;Lei, Tianhua;Zhou, Zhou;Huang, Weilu;Wu, Xuehan;Zuo, Li;Wu, Jie;Liu, Yu;Wang, Ling;Guan, Xiao;Deng, Ke;Fu, Mingui;Xin, Hong
  • 通讯作者:
    Xin, Hong
Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores.
调整环辛四烯的贝尔德芳香族三重态能量,以最大限度地提高有机荧光团的自修复机制。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Pati, Avik K;El Bakouri, Ouissam;Jockusch, Steffen;Zhou, Zhou;Altman, Roger B;Fitzgerald, Gabriel A;Asher, Wesley B;Terry, Daniel S;Borgia, Alessandro;Holsey, Michael D;Batchelder, Jake E;Abeywickrama, Chathura;Huddle, Brandt;Rufa, Dominic;J
  • 通讯作者:
    J
Physical proximity and functional cooperation of glycoprotein 130 and glycoprotein VI in platelet membrane lipid rafts.
血小板膜脂筏中糖蛋白 130 和糖蛋白 VI 的物理接近性和功能协作。
  • DOI:
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Houck, Katie L;Yuan, Hengjie;Tian, Ye;Solomon, Madeleine;Cramer, Drake;Liu, Kitty;Zhou, Zhou;Wu, Xiaoping;Zhang, Jianning;Oehler, Vivian;Dong, Jing
  • 通讯作者:
    Dong, Jing
Machine-learning-based head impact subtyping based on the spectral densities of the measurable head kinematics.
基于机器学习的头部碰撞子类型基于可测量头部运动学的光谱密度。
  • DOI:
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhan, Xianghao;Li, Yiheng;Liu, Yuzhe;Cecchi, Nicholas J;Raymond, Samuel J;Zhou, Zhou;Vahid Alizadeh, Hossein;Ruan, Jesse;Barbat, Saeed;Tiernan, Stephen;Gevaert, Olivier;Zeineh, Michael M;Grant, Gerald A;Camarillo, David B
  • 通讯作者:
    Camarillo, David B

Zhou, Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhou, Zhou', 18)}}的其他基金

Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
  • 批准号:
    RGPIN-2015-04927
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

极大孔径多天线系统基于结构化统计推理的非平稳信道估计和干扰抑制技术
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模演化异质信息网络的未知关系学习与推理研究
  • 批准号:
    61876183
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
面向智能推理的逻辑增强型分布式知识表示研究
  • 批准号:
    61876223
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于统计的类型推理方法研究
  • 批准号:
    61872272
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于逻辑规则和表示学习的知识图谱关系推理方法与应用研究
  • 批准号:
    61772117
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10610947
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了