The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
基本信息
- 批准号:22KJ1072
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-03-08 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
My research focused on the renormalization of effective field theory and dualities in generalized global symmetries. I published two papers and presented my findings in various conferences and workshops.Firstly, I investigated the renormalization of scalar effective field theories. My team and I did the first calculation of anomalous dimension tensor at higher loops for scalar effective field theories. We further developed a theorem that predicts zeros in the anomalous dimension tensors. This non-linear non-renormalization theorem was proven for all quantum field theories. Our work provides a deeper understanding of effective field theories' theoretical structures and is useful for practical calculations.Secondly, I studied lattice models with subsystem symmetry. This newly established global symmetry is attracting attention in both fields of condensed matter physics and high energy physics. I proposed a new boson-fermion duality in (2+1)d lattice models with subsystem symmetry. This duality is realized by generalized Jordan-Wigner transformation. With this duality, I found new examples of fermionic models with subsystem symmetry, which continues to deepen our understanding of this symmetry.
我的研究重点是有效场论的重整化和广义全局对称性的对偶性。我发表了两篇论文,并在各种会议和研讨会上展示了我的发现。首先,我研究了标量有效场论的重整化。我和我的团队在标量有效场论的更高循环下首次计算了反常维数张量。我们进一步发展了一个预测反常维度张量中的零的定理。这个非线性非重正化定理已针对所有量子场论得到证明。我们的工作提供了对有效场论理论结构的更深入的理解,并且对于实际计算很有用。其次,我研究了具有子系统对称性的晶格模型。这种新建立的全局对称性引起了凝聚态物理和高能物理领域的关注。我在具有子系统对称性的 (2+1)d 晶格模型中提出了一种新的玻色子-费米子对偶性。这种二元性是通过广义乔丹-维格纳变换实现的。凭借这种对偶性,我发现了具有子系统对称性的费米子模型的新例子,这不断加深了我们对这种对称性的理解。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boson-fermion duality with subsystem symmetry
具有子系统对称性的玻色子-费米子对偶性
- DOI:10.1103/physrevb.106.075150
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Cao Weiguang;Yamazaki Masahito;Zheng Yunqin
- 通讯作者:Zheng Yunqin
Dualities in theories with subsystem symmetry
子系统对称性理论中的对偶性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Cao Weiguang;Yamazaki Masahito;Zheng Yunqin;Weiguang Cao;Weiguang Cao
- 通讯作者:Weiguang Cao
Non-linear non-renormalization theorems
- DOI:10.1007/jhep08(2023)080
- 发表时间:2023-03
- 期刊:
- 影响因子:5.4
- 作者:Weiguang Cao;F. Herzog;Tom Melia;Jasper Roosmale Nepveu
- 通讯作者:Weiguang Cao;F. Herzog;Tom Melia;Jasper Roosmale Nepveu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CAO Weiguang其他文献
CAO Weiguang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effective field theory and Physics Beyond the Standard Model
超越标准模型的有效场论和物理学
- 批准号:
2883677 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
Direct Dark Matter searches in Effective Field Theory framework and Neutron Background suppression in LZ experiment
有效场论框架中的直接暗物质搜索和 LZ 实验中的中子背景抑制
- 批准号:
2888644 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
- 批准号:
2316701 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Fellowship Award
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant