High-dimensional statistical inference in parametric and nonparametric models

参数和非参数模型中的高维统计推断

基本信息

  • 批准号:
    RGPIN-2016-06262
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Recent advances in technology, engineering, and computing power, as well as problems in diverse areas such as genomics, clinical trials, cosmology, and climate studies have given rise to new types of inference problems that involve a very large number of unknown parameters and are known as high-dimensional inference or sparse inference problems. In general, it is difficult to treat these problems fully nonparametrically and provide procedures with nearly exact theoretical properties. The aim of the research proposal is to develop new and improve some existing inferential procedures of high-dimensional statistics. In doing so, the emphasis is on providing optimal and adaptive (not requiring the knowledge of unknown parameters of the statistical models) procedures in such areas of mathematical statistics as estimation theory, hypothesis testing theory, variable selection and classification. The main approach to be taken is nonparametric. This approach, adopted by mathematical statisticians on a worldwide scale, assumes that the parameter(s) entering the statistical models under study are infinite-dimensional. For instance, in nonparametric regression analysis, an unknown regression function mixed with weak noise is assumed to be a member of a large (infinite-dimensional) class of functions, rather than a known function depending on a finite number of unknown parameters, as in parametric regression analysis. The main criteria of goodness of a statistical procedure employed in this study is asymptotic minimaxity. This strong notion of optimality is commonly used in modern nonparametric statistical inference. We anticipate that the methods developed during the completion of this research proposal will find their usage in diverse fields such as clinical trials, astrophysics, economics, and information technology.
技术、工程和计算能力的最新进展,以及基因组学、临床试验、宇宙学和气候研究等不同领域的问题,引发了新型推理问题,这些问题涉及大量未知参数,并且称为高维推理或稀疏推理问题。一般来说,很难完全非参数地处理这些问题并提供具有近乎精确的理论性质的过程。该研究计划的目的是开发新的并改进一些现有的高维统计推理程序。在此过程中,重点是在估计理论、假设检验理论、变量选择和分类等数理统计领域提供最优和自适应(不需要统计模型的未知参数的知识)程序。采取的主要方法是非参数方法。这种方法被世界范围内的数学统计学家采用,它假设进入所研究的统计模型的参数是无限维的。例如,在非参数回归分析中,与弱噪声混合的未知回归函数被假设为大(无限维)函数类的成员,而不是依赖于有限数量的未知参数的已知函数,如参数回归分析。本研究中采用的统计程序的优良性的主要标准是渐近极小极大性。这种强烈的最优性概念通常用于现代非参数统计推断。我们预计在完成本研究计划期间开发的方法将在临床试验、天体物理学、经济学和信息技术等不同领域得到应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stepanova, Natalia其他文献

Gut Microbiota’s Oxalate-Degrading Activity and Its Implications on Cardiovascular Health in Patients with Kidney Failure: A Pilot Prospective Study
肠道微生物群的草酸盐降解活性及其对肾衰竭患者心血管健康的影响:一项试点前瞻性研究
  • DOI:
    10.3390/medicina59122189
  • 发表时间:
    2023-12-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stepanova, Natalia;Tolstanova, Ganna;Aleksandrova, Iryna;Korol, Lesya;Dovbynchuk, Taisa;Driianska, Victoria;Savchenko, Svitlana
  • 通讯作者:
    Savchenko, Svitlana
The Gut-Peritoneum Axis in Peritoneal Dialysis and Peritoneal Fibrosis
腹膜透析和腹膜纤维化中的肠-腹膜轴
  • DOI:
    10.1016/j.xkme.2023.100645
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Stepanova, Natalia
  • 通讯作者:
    Stepanova, Natalia
Lifesaving Care for Patients with Kidney Failure during the War in Ukraine 2022
Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of Key Findings and Perspectives
非结石性慢性肾脏病中的草酸稳态:主要发现和观点综述
  • DOI:
    10.3390/biomedicines11061654
  • 发表时间:
    2023-06-07
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Stepanova, Natalia
  • 通讯作者:
    Stepanova, Natalia

Stepanova, Natalia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stepanova, Natalia', 18)}}的其他基金

High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
  • 批准号:
    RGPIN-2016-06262
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

极大孔径多天线系统基于结构化统计推理的非平稳信道估计和干扰抑制技术
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模演化异质信息网络的未知关系学习与推理研究
  • 批准号:
    61876183
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于统计的类型推理方法研究
  • 批准号:
    61872272
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面向智能推理的逻辑增强型分布式知识表示研究
  • 批准号:
    61876223
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于逻辑规则和表示学习的知识图谱关系推理方法与应用研究
  • 批准号:
    61772117
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
  • 批准号:
    RGPIN-2022-03708
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了