Three-dimensional vortices and their instability in a geophysical flow-A quasigeostrophic vortex-turbulence model-

地球物理流中的三维涡旋及其不稳定性-准地转涡旋-湍流模型-

基本信息

  • 批准号:
    09640522
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

(1) A series of exact solution of the quasigeostrophic equation is obtained, which corresponds to a volume of ellipsoidal vortex of constant potential vorticity embedded in a uniform strain field with a uniform background vorticity. The linear instability is investigated by expanding disturbances in terms of Lame functions (MIYAZAKI).(2) A series of exact solution of the quasigeostrophic equation is obtained. which corresponds to a tilted volume of spheroidal vortex of constant potential vorticity. It rotates steadily about the vertical axis. The angular velocity is a function of the aspect ratio and does not depend on the inclination angle. The linear instability is investigated by expanding disturbances in terms of Legendre functions. A prolate spheroid is shown to be stable if its inclination angle is small and its aspect ratio is not large (close to unity). In contrast, an oblate spheroid is destabilized by resonance phenomena even if its inclination is very small (nearly vertical) (MIYAZAKI).(3) A wire-vortex turbulnece model is developed by incoorprating chaotic interactions between vortices and their merger. Pseudo-turbulence simulations are performed based on this model (MIYAZAKI).(4) It is shown that the statistical properties. such as the number of vortices and their spacing. are in good accordance with those obtained in the direct numerical simulations, which were performed on NEC-SX4 using the spectral code (2563) (HANAZAKI).
(1)获得了一系列的准真诚方程的精确溶液,该溶液对应于嵌入具有均匀背景涡流的均匀应变场中的恒定电势涡度的椭圆形涡流。通过在la脚功能(Miyazaki)方面扩大干扰来研究线性不稳定性。(2)获得了一系列准真实性方程的精确解。对应于恒定电势涡度的倾斜体积的球体涡流。它在垂直轴上稳步旋转。角速度是纵横比的函数,不取决于倾斜角。线性不稳定性通过扩大legendre函数方面的干扰来研究。如果其倾斜角度很小,并且其长宽比不大(接近统一),则显示出一个pr酸的球体是稳定的。相比之下,即使其倾斜度很小(几乎垂直)(Miyazaki)(3)涡轮涡流涡轮模型是通过不形成涡流之间的混乱相互作用而开发的。伪扰动模拟是根据该模型(Miyazaki)进行的。(4)显示统计特性。例如涡流的数量及其间距。与在直接数值模拟中获得的那些相符,该模拟是使用光谱代码(2563)(Hanazaki)在NEC-SX4上进行的。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Saito and T.Miyazaki: "Shape and stability of a bubble in Rankine's combined vortex, (in Japanese)" Nagare. 17 (6). 432-443 (1988)
H.Saito 和 T.Miyazaki:“兰金组合涡中气泡的形状和稳定性,(日语)”Nagare。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyazaki: "Short-wavelength instabilities of waves in rotating stratified flaxds" Phys.Fluids. 10・12. 3168-3177 (1998)
T.Miyazaki:“旋转分层亚麻中波的短波长不稳定性”Phys.Fluids 10・12 3168-3177(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyazaki, K.Hirahara, H.Hanazaki: "The quasi-three-dimensional instability of an elliptical vortex subject to a strain field in a rotating stratified fluid" Fluid Dynamics Research. 21 (5). 359-380 (1997)
T.Miyazaki、K.Hirahara、H.Hanazaki:“椭圆涡旋在旋转分层流体中受到应变场的准三维不稳定性”流体动力学研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyazaki, K.Adachi: "Short-wavelength instabilities of waves in rotating stratified fluids" Phys.Fluids. 10 (12). 3168-3177 (1988)
T.Miyazaki、K.Adachi:“旋转分层流体中波的短波长不稳定性”Phys.Fluids。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
斉藤秀亮,宮嵜 武: "Parkine結合渦中の気泡の形状と安定性" ながれ. 17(6). 432-443 (1998)
Hideaki Saito,Takeshi Miyazaki:“耦合 Parkine 涡流中气泡的形状和稳定性”Nagare 17(6) (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAZAKI Takeshi其他文献

MIYAZAKI Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAZAKI Takeshi', 18)}}的其他基金

The inhibition effects of the Kynurenine pathway on brain tumor stem cells and its niche.
犬尿氨酸通路对脑肿瘤干细胞及其生态位的抑制作用。
  • 批准号:
    23791601
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Empirical study on the theoretical model of municipal consolidation
城市整治理论模型实证研究
  • 批准号:
    22730256
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The practical research in how schools explain student's activitiesto stakeholders; development of a community partner questionnaire.
关于学校如何向利益相关者解释学生活动的实践研究;
  • 批准号:
    22531033
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vortex Dynamics and Scalar Transport in Rotating Stratified Turbulence-Construction of a ‘Vortex-Wave based Turbulence Model'-
旋转分层湍流中的涡动力学和标量输运-“基于涡流波的湍流模型”的构建-
  • 批准号:
    15540365
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics and Statistics of Worms around a Calumnar Vortex
周涡周围蠕虫的动力学和统计
  • 批准号:
    12640387
  • 财政年份:
    2000
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Study on the Regional Revitalization by Rural Tourism
乡村旅游带动区域振兴的实证研究
  • 批准号:
    09660247
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

钛-钢复合板缺陷电涡流三维成像检测理论和方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钛-钢复合板缺陷电涡流三维成像检测理论和方法研究
  • 批准号:
    62203195
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
水面行走昆虫的动力学机理及其诱发三维涡流场的实验研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
复杂簇状裂纹旋转均匀电流场检测机理及其三维轮廓重构研究
  • 批准号:
    61903191
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
低雷诺数下三维仿生半主动扑翼涡流运动机制及其捕能性能研究
  • 批准号:
    51975429
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Lagrangian hydrodynamics for three-dimensional nonlinear instability of vortices
涡旋三维非线性不稳定性拉格朗日流体动力学的发展
  • 批准号:
    21540390
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Unstable Structure of Three-dimensional Vortices and its Oscillation induced by Cavitation Interaction
三维涡旋不稳定结构及其空化作用引起的振荡研究
  • 批准号:
    17360081
  • 财政年份:
    2005
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three-dimensional nonlinear stability theory of vortices from the view point of Hamiltonian dynamicalsysytems
哈密​​顿动力系统视角下的涡三维非线性稳定性理论
  • 批准号:
    16540345
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DNS of Large Scale Vortices and Heat Transfer Mechanism in a Three-Dimensional Unsteady Separated Flow
三维非定常分离流中大尺度涡的DNS与传热机理
  • 批准号:
    16560170
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure Analysis and Control of Necklace Vortices Generated between Two Circular Cylinders Forming a Separating Cross
形成分离十字的两个圆柱体之间产生的项链涡流的结构分析与控制
  • 批准号:
    14550168
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了