Classification of road conditions from images with deep learning frameworks********
使用深度学习框架对图像中的路况进行分类********
基本信息
- 批准号:537911-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project with Weatherlogics seeks to automate the process of observing highway conditions by using machine learning to automatically report road conditions using images taken by highway cameras. Specifically, Deep Convolutional Neural Networks (DCNNs) will be employed to classify images taken by highway cameras through the use of transfer learning. Modern DCNN architectures have attained remarkable success in image classification tasks. The deep learning algorithm will be able to take any static image of a highway and determine the road condition that is present (e.g. dry, wet, snow-covered, slush-covered, or ice-covered).****This project would have tremendous positive benefits for Canada. By more accurately observing road conditions, especially in winter, this technology would have both economic and social benefits. Due to the high skill involved in producing and running a machine learning model, the commercialization of this technology would provide high-quality models. Furthermore, the data from this model would be used to improve driver safety and reduce transportation impacts due to weather. Given the movement toward automation in vehicles, and intelligent transportation systems, the ability to receive real-time road condition information across the entire highway network would put Canada on the leading edge of these advances in transportation. Road weather forecasts and observations are a unique service that could be used to position Weatherlogics as a leading data provider to consumers, governments, and transportation/logistics companies that are impacted by adverse road weather****The significance of project is that this technology would give Weatherlogics a unique competitive advantage over traditional weather prediction companies.**
与 Weatherlogics 合作的这个研究项目旨在通过使用机器学习利用高速公路摄像机拍摄的图像自动报告道路状况,从而实现高速公路状况观察过程的自动化。具体来说,深度卷积神经网络(DCNN)将用于通过迁移学习对高速公路摄像机拍摄的图像进行分类。现代 DCNN 架构在图像分类任务中取得了显着的成功。深度学习算法将能够拍摄高速公路的任何静态图像并确定当前的道路状况(例如干燥、潮湿、积雪、雪泥覆盖或冰覆盖)。****该项目将为加拿大带来巨大的积极利益。 通过更准确地观察路况,特别是在冬季,该技术将具有经济效益和社会效益。由于生成和运行机器学习模型需要很高的技能,该技术的商业化将提供高质量的模型。此外,该模型的数据将用于提高驾驶员安全并减少天气造成的交通影响。鉴于车辆自动化和智能交通系统的发展,在整个高速公路网络中接收实时路况信息的能力将使加拿大处于交通运输进步的前沿。道路天气预报和观测是一项独特的服务,可用于将 Weatherlogics 定位为受恶劣道路天气影响的消费者、政府和运输/物流公司的领先数据提供商****该项目的意义在于该技术与传统天气预报公司相比,Weatherlogics 将具有独特的竞争优势。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramanna, Sheela其他文献
Rough-set based learning: Assessing patterns and predictability of anxiety, depression, and sleep scores associated with the use of cannabinoid-based medicine during COVID-19
基于粗集的学习:评估与 COVID-19 期间使用大麻素药物相关的焦虑、抑郁和睡眠评分的模式和可预测性
- DOI:
10.3389/frai.2023.981953 - 发表时间:
2023 - 期刊:
- 影响因子:4
- 作者:
Ramanna, Sheela;Ashrafi, Negin;Loster, Evan;Debroni, Karen;Turner, Shelley - 通讯作者:
Turner, Shelley
Using machine learning to improve neutron identification in water Cherenkov detectors
使用机器学习改进水切伦科夫探测器中的中子识别
- DOI:
10.3389/fdata.2022.978857 - 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
Jamieson, Blair;Stubbs, Matt;Ramanna, Sheela;Walker, John;Prouse, Nick;Akutsu, Ryosuke;de Perio, Patrick;Fedorko, Wojciech - 通讯作者:
Fedorko, Wojciech
Ramanna, Sheela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramanna, Sheela', 18)}}的其他基金
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Examining ensemble machine-learning approaches to improve precipitation forecasting
检查集合机器学习方法以改进降水预报
- 批准号:
568786-2021 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Examining ensemble machine-learning approaches to improve precipitation forecasting
检查集合机器学习方法以改进降水预报
- 批准号:
568786-2021 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
- 批准号:82360199
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PCSK6经Raf-MEK1/2-ERK1/2通路调控肿瘤细胞上皮间质可塑性促进胰腺癌肝脏转移的研究
- 批准号:82373012
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
PGAM1调控STAT3/CCL2/PD-1通路介导肿瘤相关巨噬细胞M2极化在重塑乳腺癌免疫微环境中的机制研究及联合治疗策略探索
- 批准号:82373283
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
同步介导CXCR4通路阻断和线粒体功能恢复的递药系统用于肾纤维化治疗
- 批准号:82304395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A study on methods for evaluating road visibility conditions throughout the day using edge computing
利用边缘计算评估全天道路能见度状况的方法研究
- 批准号:
22KJ0072 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of conditions and mechanisms of lymphatic detour formation that may prevent lymphedema.
阐明可预防淋巴水肿的淋巴迂回形成的条件和机制。
- 批准号:
22K10702 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on effect of automatic deflector for drag reduction of road vehicles in cross-wind conditions
自动导流板对道路车辆侧风减阻效果研究
- 批准号:
21F21347 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spatial Mapping of Winter Road Weather and Surface Conditions
冬季道路天气和表面状况的空间测绘
- 批准号:
558293-2020 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Spatial Mapping of Winter Road Weather and Surface Conditions
冬季道路天气和表面状况的空间测绘
- 批准号:
558293-2020 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants