Homogenization Analysis and Experimental Verification for Creep of Unidirectional Fiber Reinforced Composites

单向纤维增强复合材料蠕变均匀化分析及实验验证

基本信息

  • 批准号:
    09450046
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

1. A homogenization theory was formulated for time-dependent nonlinear composites with periodic internal structures, so that perturbed displacement rate is decomposed into time-independent elastic and time-dependent viscoplastic parts. Then a macroscopic constitutive relation and a microscopic evolution equation of stress were derived.2. The theory mentioned above was applied to analyzing transverse creep and elastic-viscoplastic deformation of unidirectional composites reinforced with continuous fibers. Assuming the plane strain condition in the fiber orientation, and employing the square and hexagonal arrays of fibers, it was shown that the square and hexagonal arrays exhibit significant and negligible anisotropy in macroscopic behavior, respectively.3. The field of perturbed displacement rate was discussed by assuming the point symmetry of internal distributions with respect to a cell center. It was thus shown that the field of perturbed displacement rate is point-symmetric with respect to cell facet centers as well as the cell center, and that perturbed displacement rate vanishes at these centers. This finding led to introducing a semiunit cell, on the boundary of which the point symmetry is imposed on perturbed displacement rate as its boundary condition.4. The present theory was employed to analyze off-axial elastic-viscoplastic deformation of a hexagonally fiber-arrayed composite. It was then found that a small off-axis angle gives rise to significant decrease of viscoplastic flow stress, but that viscoplastic flow stress changes little for off-axis angles larger than 45 degree.5. Comparison of the analytical result mentioned above with experimental results on a hybrid composite GLARE 2 showed that the dependence of elastic-viscoplastic behavior on off-axis angle revealed in the present analysis is observed experimentally.
1. 针对具有周期性内部结构的时变非线性复合材料,建立了均质化理论,将扰动位移速率分解为与时间无关的弹性部分和与时间相关的粘塑性部分。推导了应力的宏观本构关系和微观应力演化方程。 2.将上述理论应用于分析连续纤维增强单向复合材料的横向蠕变和弹粘塑性变形。假设纤维取向的平面应变条件,并采用正方形和六边形纤维阵列,结果表明,正方形和六边形阵列在宏观行为上分别表现出显着和可忽略不计的各向异性。 3.通过假设内部分布相对于单元中心点对称来讨论扰动位移率场。由此可知,扰动位移率场相对于单元面中心以及单元中心呈点对称,并且扰动位移率在这些中心处消失。这一发现导致引入半晶胞,在其边界上施加扰动位移速率的点对称性作为其边界条件。4.本理论用于分析六边形纤维阵列复合材料的离轴弹粘塑性变形。结果发现,较小的离轴角会使粘塑性流应力显着降低,但当离轴角大于45°时,粘塑性流应力变化不大。5.将上述分析结果与混合复合材料 GLARE 2 的实验结果进行比较表明,本分析中揭示的弹粘塑性行为对离轴角的依赖性是通过实验观察到的。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Xu Wu: "A Homogenization Theory for Time-Dependent Deforrmation of Composites with Periodic Internal Structures" JSME International Journal,Series A. Vol41・No3. 309-317 (1998)
徐武:“具有周期性内部结构的复合材料随时间变形的均匀化理论”JSME国际期刊,A系列,Vol41・No3(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
X.Wu and N.Ohno: "A Homogenization Theory for Inelastic Behavior of Materials with Periodic Internal Structures" Proceedings of IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity, Elsevier. 187-186 (1997)
X.Wu 和 N.Ohno:“具有周期性内部结构的材料非弹性行为的均质化理论”IUTAM 热塑性微观和宏观结构方面研讨会论文集,爱思唯尔。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Xu Wu: "A Homogenization Theory for Time-Dependent Deformation of Composites with Periodic Internal Structures" International Journal of Solids and Atructures. 36・in print. (1999)
徐武:“具有周期性内部结构的复合材料随时间变形的均质化理论”,《国际固体与结构杂志》,36·印刷(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Ohno, T.Matsuda and X.Wu: "On Boundary Conditions for Unit Cells in the Homogenization Method (in Japanese)." Proceeding of the Conference on Computa-tional Engineering and Science. 3-3. 1001-1002 (1998)
N.Ohno、T.Matsuda 和 X.Wu:“关于均质化方法中晶胞的边界条件(日语)”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Xu Wu: "A Homogenization Theory for Inelastic Behavior of Materials with Reriodic Internal Structures" Proceedings of the IUTAM Symposium on Micro-and Mocrostructural Aspects of Thermoplasticity. 187-196 (1999)
徐武:“具有内部结构的材料的非弹性行为的均匀化理论”IUTAM 热塑性微观和宏观结构方面研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Nobutada其他文献

OHNO Nobutada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Nobutada', 18)}}的其他基金

Homogenized inelastic constitutive equation of open-porous bodies: theoretical developments and applications
开孔体均匀非弹性本构方程:理论发展与应用
  • 批准号:
    24360045
  • 财政年份:
    2012
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytical prediction and homogenization analysis of grain fining effects using a strain gradient plasticity theory
使用应变梯度塑性理论对晶粒细化效果进行分析预测和均匀化分析
  • 批准号:
    19360048
  • 财政年份:
    2007
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Large-scale Multiscale Analysis for Microscopic Buckling and Macroscopic Instability of Periodic Cellular Solids Based on a Homogenization Theory
基于均质化理论的周期性多孔固体微观屈曲和宏观不稳定性的大规模多尺度分析
  • 批准号:
    15360051
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microscopic Buckling Analysis of Cellular Solids Based on a Homogenization Theory of Finite Deformation
基于有限变形均匀化理论的多孔固体微观屈曲分析
  • 批准号:
    13650084
  • 财政年份:
    2001
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Laser-Raman Measurement and Analytical Evaluation of Matrix Creep Induced Stress Relaxation in Broken Fibers
断裂纤维中基体蠕变引起的应力松弛的激光拉曼测量和分析评估
  • 批准号:
    11650086
  • 财政年份:
    1999
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

蠕变效应下南海水合物降压开采储层流固产出及沉降变形规律
  • 批准号:
    42376220
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高温蠕变固体多尺度断裂机理和理论研究
  • 批准号:
    12332005
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
L12相强化双多组元钴基合金的高温蠕变行为及机理研究
  • 批准号:
    52301139
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
互层盐岩疲劳-蠕变耦合损伤机制及大型压气蓄能盐穴长期稳定性研究
  • 批准号:
    52374078
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑剪切蠕变的钙质砂地基中抗拔桩承载时效性研究
  • 批准号:
    42367020
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
  • 批准号:
    2340174
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
SBIR Phase I: Advanced Manufacturing of Oxide Dispersion-Strengthened Superalloys for High Temperature Creep and Hydrogen Environment Applications
SBIR 第一阶段:用于高温蠕变和氢环境应用的氧化物弥散强化高温合金的先进制造
  • 批准号:
    2335531
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
Microstructural Evolution during Superplastic Ice Creep
超塑性冰蠕变过程中的微观结构演化
  • 批准号:
    2317263
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Investigation on the effects of fatigue and creep on the frecture mechanics properties of solid wood
疲劳和蠕变对实木断裂力学性能影响的研究
  • 批准号:
    23H02277
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Acceleration and retardation behavior of creep-fatigue crack propagation in Ni-base superalloys: Mechanisms and quantitative modelling
镍基高温合金中蠕变疲劳裂纹扩展的加速和延迟行为:机制和定量建模
  • 批准号:
    23K03600
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了