Extending the reach of automated algorithm design, optimisation and customisation

扩展自动化算法设计、优化和定制的范围

基本信息

  • 批准号:
    RGPIN-2016-04273
  • 负责人:
  • 金额:
    $ 4.59万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Challenging computational problems arise prominently in areas such as software verification, energy systems optimisation and analysis of large amounts of data. Efficient software systems for solving these problems are of crucial importance, and improvements to these systems will have considerable economic and societal benefits, e.g., in terms of more sustainable and efficient use of energy and resources. Our research aims at automatically designing, optimising and customising such software for specific application situations.***Specifically, our Programming by Optimisation (PbO) approach takes broadly applicable, general-purpose software, makes it flexible and adaptable by encouraging and exposing design choices for key components, and then exploits this flexibility by automatically adapting the software to specific application situations, using advanced machine learning and optimisation techniques. PbO has already attracted much interest in academia and industry; the research proposed here aims to take PbO to the next level, with the goal of establishing this paradigm as a standard way of designing software for computational problems across a wide range of application domains.***Towards this end, we will address three major challenges arising in the context of software development using PbO (and beyond). Firstly, it can be very expensive to evaluate configurations or variants of a given piece of software - too expensive to permit direct design optimisation on sets of benchmarks representing the size and difficulty of those problem instances encountered in the intended application. Secondly, e.g., in applications dealing with sensitive data, it may be impossible to perform design optimisation as part of the development process; instead, it may have to be done post-deployment, in the actual application context, using substantially more limited computational resources. Thirdly, creating, managing and assessing design choices can be rather expensive in terms of human expert time.***Our methodological work on overcoming these challenges will be guided and validated using three prominent and important applications:***- software verification based on state-of-the-art SAT-modulo-theory (SMT) solvers (A1);***- automated design and configuration of machine learning pipelines for analysing large amounts of data (A2); and***- optimisation of software systems for generation and storage of clean energy (A3). ***We expect our work, which combines advances in machine learning and optimisation, to take automated algorithm design, optimisation and customisation to the next level, to have transformative impact on the design of software for these and other computationally challenging applications, thus creating very significant value within the information technology sector that produces such software and in the areas that rely on their application.**
具有挑战性的计算问题主要出现在软件验证、能源系统优化和大量数据分析等领域。解决这些问题的高效软件系统至关重要,对这些系统的改进将产生可观的经济和社会效益,例如在更可持续和更有效地利用能源和资源方面。我们的研究旨在针对特定应用情况自动设计、优化和定制此类软件。***具体来说,我们的优化编程 (PbO) 方法采用广泛适用的通用软件,通过鼓励和公开设计选择来使其灵活且适应性强关键组件,然后通过使用先进的机器学习和优化技术自动使软件适应特定的应用情况来利用这种灵活性。 PbO已经引起了学术界和工业界的极大兴趣;这里提出的研究旨在将 PbO 提升到一个新的水平,目标是将该范例建立为跨广泛应用领域的计算问题设计软件的标准方法。***为此,我们将解决三个主要问题使用 PbO(及其他)进行软件开发时出现的挑战。首先,评估给定软件的配置或变体可能非常昂贵 - 太昂贵而无法允许对表示预期应用中遇到的问题实例的大小和难度的基准集进行直接设计优化。其次,例如,在处理敏感数据的应用程序中,可能无法将设计优化作为开发过程的一部分;相反,它可能必须在实际应用程序环境中使用更加有限的计算资源在部署后完成。第三,就人类专家的时间而言,创建、管理和评估设计选择可能相当昂贵。***我们克服这些挑战的方法工作将使用三个突出且重要的应用程序进行指导和验证:***-基于最先进的 SAT 模理论 (SMT) 求解器 (A1);***- 用于分析大量数据的机器学习管道的自动化设计和配置 (A2); ***- 优化清洁能源生成和存储的软件系统(A3)。 ***我们期望我们的工作结合了机器学习和优化方面的进步,将自动化算法设计、优化和定制提升到一个新的水平,对这些和其他计算上具有挑战性的应用程序的软件设计产生变革性影响,从而创造在生产此类软件的信息技术部门以及依赖其应用的领域具有非常重要的价值。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hoos, Holger其他文献

VPint: value propagation-based spatial interpolation
VPint:基于值传播的空间插值
  • DOI:
    10.1007/s10618-022-00843-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Arp, Laurens;Baratchi, Mitra;Hoos, Holger
  • 通讯作者:
    Hoos, Holger
Enhanced flowType/RchyOptimyx: a BioConductor pipeline for discovery in high-dimensional cytometry data.
增强型 flowType/RchyOptimyx:用于发现高维细胞计数数据的 BioConductor 管道。
  • DOI:
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O'Neill, Kieran;Jalali, Adrin;Aghaeepour, Nima;Hoos, Holger;Brinkman, Ryan R
  • 通讯作者:
    Brinkman, Ryan R
Critical assessment of automated flow cytometry data analysis techniques.
自动流式细胞术数据分析技术的批判性评估。
  • DOI:
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Aghaeepour, Nima;Finak, Greg;FlowCAP Consortium;DREAM Consortium;Hoos, Holger;Mosmann, Tim R;Brinkman, Ryan;Gottardo, Raphael;Scheuermann, Richard H
  • 通讯作者:
    Scheuermann, Richard H

Hoos, Holger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hoos, Holger', 18)}}的其他基金

Extending the reach of automated algorithm design, optimisation and customisation
扩展自动化算法设计、优化和定制的范围
  • 批准号:
    RGPIN-2016-04273
  • 财政年份:
    2017
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Individual
Extending the reach of automated algorithm design, optimisation and customisation
扩展自动化算法设计、优化和定制的范围
  • 批准号:
    RGPIN-2016-04273
  • 财政年份:
    2017
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Individual
Extending the reach of automated algorithm design, optimisation and customisation
扩展自动化算法设计、优化和定制的范围
  • 批准号:
    RGPIN-2016-04273
  • 财政年份:
    2016
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Individual
Extending the reach of automated algorithm design, optimisation and customisation
扩展自动化算法设计、优化和定制的范围
  • 批准号:
    RGPIN-2016-04273
  • 财政年份:
    2016
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Individual
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    401376-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Individual
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    401376-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Automated Scheduling Tool for Grant Reviewing
用于资助审查的自动安排工具
  • 批准号:
    412559-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Miscellaneous Grants
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Scheduling Tool for Grant Reviewing
用于资助审查的自动安排工具
  • 批准号:
    412559-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 4.59万
  • 项目类别:
    Miscellaneous Grants

相似国自然基金

海浪模式对涌浪抵达时间的模拟能力评价及误差来源研究
  • 批准号:
    41806010
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Testing Technology-Based Implementation Strategies for a Family-Based Pediatric Health Behavior Intervention in Community-Based Primary Care: A Cluster Randomized Factorial Trial
测试基于技术的社区初级保健中基于家庭的儿科健康行为干预的实施策略:整群随机析因试验
  • 批准号:
    10738964
  • 财政年份:
    2023
  • 资助金额:
    $ 4.59万
  • 项目类别:
Evaluation of triage strategies and screening intervals in a human papillomavirus based cervical cancer screening program in women living with human immunodeficiency virus in Botswana
博茨瓦纳人类免疫缺陷病毒感染妇女基于人乳头瘤病毒的宫颈癌筛查计划的分诊策略和筛查间隔的评估
  • 批准号:
    10655623
  • 财政年份:
    2022
  • 资助金额:
    $ 4.59万
  • 项目类别:
Evaluation of triage strategies and screening intervals in a human papillomavirus based cervical cancer screening program in women living with human immunodeficiency virus in Botswana
博茨瓦纳人类免疫缺陷病毒感染妇女基于人乳头瘤病毒的宫颈癌筛查计划的分诊策略和筛查间隔的评估
  • 批准号:
    10483598
  • 财政年份:
    2022
  • 资助金额:
    $ 4.59万
  • 项目类别:
Remote monitoring for Equity in Advancing Control of Hypertension (REACH)
远程监控促进高血压控制的公平性 (REACH)
  • 批准号:
    10894529
  • 财政年份:
    2021
  • 资助金额:
    $ 4.59万
  • 项目类别:
Cluster randomized trial of a mobile health intervention to achieve appropriate gestational weight gain in overweight/obese women
移动健康干预的集群随机试验,以实现超重/肥胖女性适当的妊娠期体重增加
  • 批准号:
    10599159
  • 财政年份:
    2019
  • 资助金额:
    $ 4.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了