Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
基本信息
- 批准号:RGPIN-2015-03654
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is now established that complex biological phenotypes are not governed by single genes but instead by networks of interacting genes and gene products. As a consequence, deciphering the structure of the gene regulatory network (GRN) is crucial to further our understanding of fundamental processes in human cells. However, the mapping of molecular interactions in the intracellular realm remains the bottleneck in the pipeline to produce biological knowledge from high-throughput biological data. ******Recent advances in bioinformatics and high-performance computing made it possible to infer undirected large-scale regulatory networks from collections of transcriptomic data. However very few network inference methods can infer the directionality (causality) of predicted gene interactions, despite this being key in the process of better interpreting GRNs. Another challenge when inferring large-scale GRNs consists in quantitatively assessing their validity. Popular, however weak, validation procedures include (i) showing that the algorithm under study performs well on simulated datasets for which the true underlying network is known by construction; (ii) using incomplete `gold standard' datasets, such as known transcription factors and their targets, which poorly recapitulate the interactions that can be inferred from transcriptomic data; and (iii) using low-throughput laboratory experiments to validate a few predicted interactions, which represent only a very small and potentially biased part of the inferred GRN.******Our research program addresses these issues from several angles. First we will build on our recent contributions in the field of network biology to develop new machine learning methods enabling inference of large-scale causal GRNs. These methods will be novel in their implementation of an ensemble approach for network and causality inference, and their integration of priors extracted from the biomedical literature. Second we will extend our recently published validation framework to quantitatively assess and compare our new methods with state-of-the-art network inference techniques. Third we will develop a computational platform to allow biologists to leverage our computational tools to adequately map their genes or pathways of interest into large GRNs.******To achieve these objectives, I will rely on my close collaborations with renowned computer scientists, bioinformaticians, and biologists, This will not only ensure that my methods are applied to real and new data, but also that the development of these methods are being continuously evaluated in order to impact the larger community of researchers involved in biological and medical studies.
现在已经确定,复杂的生物表型不是由单个基因控制的,而是由相互作用的基因和基因产物的网络控制的。因此,破译基因调控网络(GRN)的结构对于进一步了解人类细胞的基本过程至关重要。然而,细胞内领域分子相互作用的映射仍然是从高通量生物数据产生生物知识的瓶颈。 ******生物信息学和高性能计算的最新进展使得从转录组数据收集中推断无向的大规模调控网络成为可能。然而,很少有网络推理方法可以推断预测基因相互作用的方向性(因果关系),尽管这是更好地解释 GRN 过程的关键。推断大规模 GRN 时的另一个挑战在于定量评估其有效性。流行的验证程序(无论多么弱)包括(i)表明正在研究的算法在模拟数据集上表现良好,而通过构建已知该数据集的真实底层网络; (ii) 使用不完整的“黄金标准”数据集,例如已知的转录因子及其靶标,这些数据集很难概括从转录组数据推断出的相互作用; (iii) 使用低通量实验室实验来验证一些预测的相互作用,这些相互作用仅代表推断的 GRN 的很小且可能存在偏差的部分。 *****我们的研究计划从多个角度解决这些问题。首先,我们将基于我们最近在网络生物学领域的贡献来开发新的机器学习方法,从而能够推断大规模因果 GRN。这些方法在网络和因果推理的集成方法的实现以及从生物医学文献中提取的先验的整合方面将是新颖的。其次,我们将扩展我们最近发布的验证框架,以定量评估我们的新方法并将其与最先进的网络推理技术进行比较。第三,我们将开发一个计算平台,使生物学家能够利用我们的计算工具将他们感兴趣的基因或途径充分映射到大型 GRN 中。******为了实现这些目标,我将依靠与著名计算机科学家的密切合作、生物信息学家和生物学家,这不仅将确保我的方法应用于真实的新数据,而且还将不断评估这些方法的发展,以影响参与生物和医学研究的更广泛的研究人员群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HaibeKains, Benjamin其他文献
HaibeKains, Benjamin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HaibeKains, Benjamin', 18)}}的其他基金
Development of a deep learning approach to predict noisy biological phenotypes
开发预测噪声生物表型的深度学习方法
- 批准号:
RGPIN-2021-02680 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Development of a deep learning approach to predict noisy biological phenotypes
开发预测噪声生物表型的深度学习方法
- 批准号:
RGPIN-2021-02680 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Development of a deep learning approach to predict noisy biological phenotypes
开发预测噪声生物表型的深度学习方法
- 批准号:
RGPIN-2021-02680 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Development of a deep learning approach to predict noisy biological phenotypes
开发预测噪声生物表型的深度学习方法
- 批准号:
RGPIN-2021-02680 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Precision medicine in breast cancer: from the computer to the clinic
乳腺癌精准医学:从计算机到诊所
- 批准号:
493626-2016 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Collaborative Health Research Projects
Precision medicine in breast cancer: from the computer to the clinic
乳腺癌精准医学:从计算机到诊所
- 批准号:
493626-2016 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Collaborative Health Research Projects
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于图模型贝叶斯推断的网络化雷达目标探测新框架与处理方法研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
基于概率程序的因果推断框架研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
统计推断框架下的网络重构问题研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于Sketch与统计推断的高性能与高可用网络测量框架研究
- 批准号:61802365
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于因果推断框架下的最优治疗方案选择的统计方法研究
- 批准号:81773546
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual