Projections of municipal water demand with ANN and SD models under climate change
气候变化下城市用水需求的ANN和SD模型预测
基本信息
- 批准号:531171-2018
- 负责人:
- 金额:$ 1.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Water utilities across North America have observed declining residential water consumption over the past three**decades. Because they typically bill for water use on a per-unit-volume basis, such reductions in use have**financial implications. Further, water rates are usually set years ahead of time, so that inaccurate monthly to**annual predictions compound the financial effects of reduced water use. On shorter time scales of hours to**weeks, water utilities also make operational decisions to meet municipal demands. Short term forecasts help to**plan maintenance and operating schedules for system infrastructure and inform decisions about water levels**and drawdowns for reservoirs, and they tend to be dominated by weather. Thus, accurate prediction of**municipal water use is important for both short-term (operational) and long-term (planning) aspects of urban**water management.**This project will 1) provide forecasting models for both daily (operational) and weekly (planning) water**demands for EPCOR in Edmonton, Alberta, and 2) incorporate the weekly demands into a unique decision**support tool for long-term municipal water management. The two forecasting models will be developed using**Artificial Neural Networks (ANN), which have been applied widely for water demand projections. ANNs offer**excellent predictive ability and are relatively straightforward to develop and validate. Next, the planning**version of the ANN model will be used to revise an existing municipal water management model, called the**Calgary Water Management Model (CWMM), which will be set up for Edmonton. The CWMM can be used to**support municipal planning horizons of years to decades and is particularly useful for assessing the effects of**population growth, climate change and the effects of conservation policies and technological change over the**long term.
过去三**十年中,北美各地的自来水公司观察到住宅用水量不断下降。由于他们通常按单位用水量计费,因此用水量的减少会产生**财务影响。此外,水费通常提前数年设定,因此每月到每年的预测不准确会加剧用水量减少的财务影响。在数小时至**周的较短时间范围内,自来水公司还做出运营决策以满足市政需求。短期预测有助于**规划系统基础设施的维护和运营计划,并为有关水位**和水库水位下降的决策提供信息,而且它们往往受天气影响。因此,准确预测**市政用水对于城市**水资源管理的短期(运营)和长期(规划)方面都很重要。**该项目将 1) 提供日常(运营)用水的预测模型) 和艾伯塔省埃德蒙顿 EPCOR 的每周(规划)用水需求**,以及 2) 将每周需求纳入到长期市政用水管理的独特决策**支持工具中。这两个预测模型将使用**人工神经网络(ANN)开发,该网络已广泛应用于水需求预测。人工神经网络提供**出色的预测能力,并且开发和验证相对简单。接下来,ANN模型的规划**版本将用于修改现有的市政水资源管理模型,称为**卡尔加里水资源管理模型(CWMM),该模型将为埃德蒙顿建立。 CWMM 可用于**支持数年至数十年的市政规划视野,对于评估**人口增长、气候变化以及保护政策和技术变革的长期影响特别有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Davies, Evan其他文献
Davies, Evan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Davies, Evan', 18)}}的其他基金
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2022
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2022
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2021
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2021
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2020
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2020
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2019
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2019
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2018
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
Water resources systems modelling at the river-basin scale
流域尺度水资源系统建模
- 批准号:
RGPIN-2018-05861 - 财政年份:2018
- 资助金额:
$ 1.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
适应热网拓扑重构的城市级电-热联合调度优化降阶与异质分解方法研究
- 批准号:52307131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市级国土空间规划体系的多层次传导过程建模与空间协同优化研究
- 批准号:42371408
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
构建市级似大地水准面的虚拟球谐理论与方法
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于生态系统服务权衡与协同的市级生态空间多目标优化研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
北京市级绿道规划的慢行活力预测、优化和实施优先级评估方法研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
CIVIC-PG Track B: Reducing disparities in drinking water access by rebuilding consumer confidence in municipal tap water
CIVIC-PG 轨道 B:通过重建消费者对市政自来水的信心来减少饮用水获取方面的差异
- 批准号:
2228457 - 财政年份:2022
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
CIVIC-PG Track B: Reducing disparities in drinking water access by rebuilding consumer confidence in municipal tap water
CIVIC-PG 轨道 B:通过重建消费者对市政自来水的信心来减少饮用水获取方面的差异
- 批准号:
2228457 - 财政年份:2022
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Water Unaffordability in the United States: Using Principles of Organizational Learning to Understand Municipal Capacity to Safeguard Water Access
美国的水负担能力:利用组织学习原则了解市政保障用水的能力
- 批准号:
1948790 - 财政年份:2020
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Optimization of Energy Consumption in Municipal Drinking Water Treatment Systems
城市饮用水处理系统能耗优化
- 批准号:
556364-2020 - 财政年份:2020
- 资助金额:
$ 1.8万 - 项目类别:
Alliance Grants
Optimization of Energy Consumption in Municipal Drinking Water Treatment Systems
城市饮用水处理系统能耗优化
- 批准号:
556364-2020 - 财政年份:2020
- 资助金额:
$ 1.8万 - 项目类别:
Alliance Grants