Selection and Justification of Hydro-Morphodynamic Models using Information Theory: Active Learning on Surrogate Emulators
使用信息论选择和论证水形态动力学模型:代理模拟器的主动学习
基本信息
- 批准号:513054523
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modelling hydro-morphodynamic processes in river ecosystems faces the challenges to reproduce complex, dynamic, and highly variable systems by making expert-driven simplification hypotheses. For this reason, a model for reproducing hydro-morphodynamics over long spatio-temporal scales, for instance, for climate change analysis, involves vast uncertainty. The input data required for modelling hydro-morphodynamics involve information on ecosystem characteristics, such as sediment grain size and surface elevation. Yet, every dataset has gaps in time or in space with often considerable uncertainty. Thus, the modelling procedure involves a chain of data acquisition and processing, and substantial simplifications of complex systems, which result in various types of uncertainty. These steps (and their weaknesses) in the modelling chain constitute substantial research challenges regarding uncertainty quantification for sophisticated hydro-morphodynamic models. Moreover, the selection of multi-dimensional hydro-morphodynamic modelling concepts is challenging since a multitude of different modelling approaches exist that need justified decisions. Therefore, hydro-morphodynamic modelling can benefit from rigorous and statistical methods for model selection, callibration and justification. To address these modelling challenges at feasible computational costs, our project proposes a machine learning approach based on Bayesian analysis, information theory, and active learning that will enable to emulate non-linear hydro-morphodynamic models. The proposed approach accounts for the sparse nature of measurement data and aims to significantly shorten computationally demanding simulations. The pathway to solving the modelling challenges implies the development of (1) a hybrid modelling chain for deterministic modelling; (2) a surrogate emulator based on stochastic approaches and information theory; (3) stochastic routines to leverage model selection, calibration and justification; and (4) a transfer concept to real-world systems for justifiability analysis. This project will boost hydro-morphodynamic modelling to evolve from a subjective deterministic workflow to a sophisticated, stochastically optimized, and objectively transparent sequence of algorithms.
对河流生态系统中的水动力过程进行建模面临着通过专家驱动的简化假设来重现复杂、动态和高度可变系统的挑战。因此,在长时空尺度上再现水体形态动力学的模型(例如用于气候变化分析)涉及巨大的不确定性。水文形态动力学建模所需的输入数据涉及生态系统特征的信息,例如沉积物粒度和表面海拔。然而,每个数据集都存在时间或空间上的差距,并且通常具有相当大的不确定性。因此,建模过程涉及一系列数据采集和处理,以及复杂系统的大幅简化,从而导致各种类型的不确定性。建模链中的这些步骤(及其弱点)构成了复杂水形态动力学模型不确定性量化的重大研究挑战。此外,多维流体形态动力学建模概念的选择具有挑战性,因为存在多种需要合理决策的不同建模方法。因此,水流形态动力学建模可以受益于模型选择、校准和论证的严格统计方法。为了以可行的计算成本解决这些建模挑战,我们的项目提出了一种基于贝叶斯分析、信息论和主动学习的机器学习方法,该方法将能够模拟非线性水形态动力学模型。所提出的方法考虑了测量数据的稀疏性,旨在显着缩短计算要求较高的模拟。解决建模挑战的途径意味着开发(1)用于确定性建模的混合建模链; (2)基于随机方法和信息论的代理模拟器; (3) 利用模型选择、校准和论证的随机例程; (4) 将概念转移到现实世界系统中以进行合理性分析。该项目将推动水力形态动力学建模,从主观确定性工作流程发展为复杂的、随机优化的、客观透明的算法序列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Wolfgang Nowak其他文献
Professor Dr.-Ing. Wolfgang Nowak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Wolfgang Nowak', 18)}}的其他基金
A hybrid stochastic-deterministic model calibration method with application to subsurface CO2 storage in geological formations
一种混合随机-确定性模型校准方法,应用于地质构造中地下二氧化碳封存
- 批准号:
288483442 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
A reverse engineering approach to optimal design of site investigation schemes and monitoring networks
现场调查方案和监测网络优化设计的逆向工程方法
- 批准号:
187824825 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Optimierte Informationsverarbeitung in Methoden zur stochastischen Simulation und zur Abschätzung von Parameterwerten: Unsichere zeitabhängige Strömungs- und Transportvorgänge im Untergrund
随机模拟和参数值估计方法中的优化信息处理:地下不确定的时间相关流动和传输过程
- 批准号:
46547152 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
消费者冲动性购买行为选择:理由与自我控制
- 批准号:70772055
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
non-equllibrium dynamics of hydrogen-bonded molecular assembly
氢键分子组装的非平衡动力学
- 批准号:
20K05476 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of first principles calculation scheme of thermodynamic phase diagram
热力学相图第一原理计算方案的开发
- 批准号:
19K03673 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Why and how should the government operate the remedy system for civil damage related to the public pollution?
政府为何以及如何运行公共污染民事损害救济制度?
- 批准号:
17K03359 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study for exhaust carbon dioxide enzyme reaction in bioluminescence
生物发光中废气二氧化碳酶反应的理论研究
- 批准号:
17KT0094 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermodynamic stability of methane-carbon dioxide hydrate and ejection of methane on the Mars
甲烷-二氧化碳水合物的热力学稳定性和火星上甲烷的喷射
- 批准号:
17K19106 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)