Algebraic and geometric structures related to integrable systems

与可积系统相关的代数和几何结构

基本信息

  • 批准号:
    RGPIN-2014-05062
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The beauty and attraction of mathematics is rooted in profound images of geometry and physics coming from our perception of reality and it’s analysis at different levels of sophistication. The job of mathematicians then is to express this beauty in terms of formal algebraic structures. Indeed, in forming algebraic structures we, mathematicians, can capture images of geometry and physics by creating a new, algebraic language in which to discuss them and make them accessible to our exploration, analysis and comprehension. The aim of my research program is to investigate algebraic structures arising in the theory of so-called integrable models. A simple example is the famous Korteweg–de Vries equation which is a partial differential equation for a single function u(t,x) of two variables t (time) and x (spatial coordinate). This equation has a form u_t=u_xxx+u u_x where indexes t and x stand for partial derivatives. The Korteweg–de Vries equation, in spite of its simple form, possess a rich and beautiful theory that includes interesting algebraic structures, particular solutions (the so-called solitons) and links with various fields of mathematics from algebraic geometry to functional analysis. I am proposing to study more complicated integrable models over the next few years. The first part of the proposal is devoted to quasi-linear systems of partial differential equations of the form A(u)u_t+B(u)u_x+C(u)u_y=0 where u(t,x,y) is a vector function and A, B, C are matrices depending on u. Equations of this form are useful in hydrodynamics. Such integrable systems also admit a rich mathematical theory. Many fields of mathematics (such as algebraic and differential geometry) will benefit from the development of a theory of such integrable systems. We also wish to study similar systems that are non-homogeneous and have two independent variables t and x. A typical example is a system of two equations for two unknown functions u(t,x) and v(t,x) of the form: u_t=v u_x+1/(u-v), v_t=u v_x+1/(v-u). Because this system admits many new and unusual properties, I am convinced that it's study has the potential of significantly enriching the whole theory of integrable systems. Other studies will be devoted to the so-called matrix integrable systems. A simple example of such system is the generalized Euler top which is an ordinary differential equation U_t=CU^2-U^2C where U(t) is a square matrix function of time t and C is a constant matrix. The last (but not least) part of the proposal is dedicated to algebraic structures arising in the theory of quantum integrable models: namely, the so-called elliptic algebras. To explain the idea, consider three variables x, y, z which do not commute but are subject to relations: xy-yx=z, yz-zy=x, zx-xz=y. It is well known that using these relations any monomial (say, zyxy) can be written in a unique way as a linear combination of ordered monomials such as xxyzzz. A proof of this statement is not hard and based on the observation that x, y, z actually commute up to linear terms. The theory of elliptic algebras deals with similar relations but with quadratic terms only, for example xy-3yx=5z^2, yz-3zy=5x^2, zx-3xz=5y^2. The similar statement about ordered monomials is also valid in this case but the proof is much harder. Elliptic algebras play a significant role in various branches of mathematics and mathematical physics including algebraic geometry, quantum integrable models and even homological algebra. Moreover, some structures connected with the so-called semi-classical limits of elliptic algebras are important in the theory of integrable differential equations discussed above. To summarize, the proposed research is devoted to important algebraic structures arising in modern mathematical physics.
数学的美丽和吸引力植根于来自我们对现实的感知的几何和物理的深刻图像,数学家的工作就是用形式代数结构来表达这种美丽。在形成代数结构的过程中,我们数学家可以通过创建一种新的代数语言来捕捉几何和物理的图像,并用这种语言来讨论它们,并使它们可供我们探索、分析和理解。 我的研究计划的目的是研究所谓可积模型理论中出现的代数结构,一个简单的例子是著名的 Korteweg-de Vries 方程,它是单函数 u(t,x) 的偏微分方程。两个变量 t(时间)和 x(空间坐标) 该方程的形式为 u_t=u_xxx+u u_x,其中索引 t 和 x 代表 Korteweg–de Vries 方程,尽管其形式简单,但拥有丰富而美丽的理论,包括有趣的代数结构、特定的解决方案(所谓的孤子)以及与从代数几何到泛函分析的各个数学领域的联系,我建议研究更复杂的可积。未来几年的模型。 该提案的第一部分致力于 A(u)u_t+B(u)u_x+C(u)u_y=0 形式的偏微分方程的拟线性系统,其中 u(t,x,y) 是向量函数和 A、B、C 是取决于 u 的矩阵。这种形式的方程在流体动力学中很有用,丰富的数学理论也将受益。来自此类可积系统理论的发展。 我们还希望研究具有两个自变量 t 和 x 的非齐次类似系统,一个典型的例子是两个未知函数 u(t,x) 和 v(t,x) 形式的两个方程组。 :u_t=v u_x+1/(u-v), v_t=u v_x+1/(v-u) 因为这个系统承认许多新的和不寻常的性质,我相信它的研究有可能显着丰富整个系统。可积系统理论。 其他研究将致力于所谓的矩阵可积系统,此类系统的一个简单示例是广义欧拉顶,它是一个常微分方程 U_t=CU^2-U^2C,其中 U(t) 是方阵函数。时间 t 和 C 是一个常数矩阵。 该提案的最后(但并非最不重要)部分致力于量子可积模型理论中出现的代数结构:即所谓的椭圆代数。为了解释这个想法,请考虑三个变量 x、y、z。通勤但受关系:xy-yx=z、yz-zy=x、zx-xz=y 众所周知,使用这些关系任何单项式(例如 zyxy)都可以。以独特的方式写为有序单项式的线性组合,例如 xxyzzz,该陈述的证明并不困难,并且基于 x、y、z 实际上可转换为线性项的观察。类似的关系,但仅包含二次项,例如 xy-3yx=5z^2, yz-3zy=5x^2, zx-3xz=5y^2 关于有序的类似陈述。单项式在这种情况下也是有效的,但证明要困难得多。 椭圆代数在数学和数学物理的各个分支中发挥着重要作用,包括代数几何、量子可积模型甚至同调代数。此外,与椭圆代数的所谓半经典极限相关的一些结构在可积理论中也很重要。上面讨论的微分方程。 总而言之,拟议的研究致力于现代数学物理中出现的重要代数结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Odesski, Alexandre其他文献

Odesski, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Odesski, Alexandre', 18)}}的其他基金

Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

模糊凸结构的几何性质和松代数表示
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
算子代数中齐性空间的微分几何结构
  • 批准号:
    11901453
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Calabi-Yau范畴上的非交换几何结构
  • 批准号:
    11671281
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
代数几何与拓扑的交叉
  • 批准号:
    11671222
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
结构空间与代数簇的几何拓扑
  • 批准号:
    11671286
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structures and combinatorial structures of 3-dimensional manifolds
3维流形的几何结构和组合结构
  • 批准号:
    20K03614
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了