Detecting Discrimination: A signal detection analysis
检测歧视:信号检测分析
基本信息
- 批准号:503990132
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Discrimination is the unfair or prejudicial treatment of people and groups based on characteristics such as race, gender, age or sexual orientation. Being able to detect discrimination is a necessary first step in countering it. Yet, there is consensus that the evidence for or against discrimination in specific observed cases is often ambiguous or hidden. The attribution of an outcome to discrimination therefore regularly occurs in a context of considerable uncertainty. Modeling decisions under uncertainty is the goal of signal detection theory (SDT), that has been a classical theoretical framework in the study of attributions to discrimination. SDT’s most important contribution to understanding this judgmental process is to separate and measure two components that contribute to it, sensitivity and response bias. Sensitivity refers to the ability to distinguish between cases with and without cues to discrimination. Response bias refers to the tendency to prefer an attribution to discrimination relative to other attributions.Despite the prominent role that SDT has played in theoretical discussions in the relevant literature, there are no empirical studies that have made possible SDT analyses of observed attributions to discrimination. The purpose of the present proposal is to take a first step towards filling this gap with a new paradigm. SDT analyses promise two contributions: (1) They allow one to characterize empirical findings more precisely as sensitivity effects, response-bias effects, or combinations of both, and (2) they inform theories addressing these findings by clarifying mediational pathways. In the long term, the resulting insights can also contribute to the design of trainings to sensitize observers and decision makers to detect cases of discrimination when they occur.In the project, attributions to gender bias, racial bias, and their intersection are to be investigated by SDT analyses. This allows one to address research questions for which SDT-based theorizing has already sometimes offered conjectures, but for which empirical answers could so far not be given. Examples are the following: Do members of groups that are discriminated against differ in sensitivity and/or response from members of groups that are not victims of discrimination or are even favored by it? What is the role of stereotypical expectations about typical constellations of discrimination in this process and in particular, how are the effects of such expectations mediated – via effects on sensitivity or response bias?
歧视是基于种族、性别、年龄或性取向等特征对人和群体的不公平或偏见待遇。能够发现歧视是反对歧视的必要的第一步。然而,人们一致认为,支持或反对的证据。特定观察案例中的歧视通常是模糊的或隐藏的,因此,在不确定性的背景下对结果进行建模是信号检测理论(SDT)的目标,信号检测理论(SDT)一直是一个经典的理论框架。在研究中SDT 对理解这一判断过程最重要的贡献是分离和衡量促成这一过程的两个组成部分,即敏感性和反应偏差,即区分有或没有歧视线索的案例的能力。尽管SDT在相关文献的理论讨论中发挥了突出作用,但还没有实证研究可以对观察到的歧视归因进行SDT分析。本提案的目的是采取新范式来填补这一空白的第一步,SDT 分析有望做出两个贡献:(1)它们允许人们更准确地将经验发现描述为敏感性效应、响应偏差效应或两者的组合。 ,(2)他们通过澄清中介途径为解决这些发现的理论提供信息。从长远来看,由此产生的见解也有助于培训的设计,以提高观察者和决策者的敏感度,以便在歧视案件发生时及时发现。 , 性别归因偏见、种族偏见及其交叉点将通过 SDT 分析进行调查,这使得人们能够解决基于 SDT 的理论有时已经提供了猜想的研究问题,但迄今为止还无法给出实证答案。下列问题:受歧视群体的成员与非歧视受害者甚至受歧视群体的成员的敏感性和/或反应是否不同?在此过程中,对典型歧视群体的陈规定型期望发挥了什么作用?特别是,情况如何这种期望的影响是通过对敏感性或反应偏差的影响来介导的吗?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Karl Christoph Klauer其他文献
Professor Dr. Karl Christoph Klauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Karl Christoph Klauer', 18)}}的其他基金
RT-MPTs: Multinomial processing tree models and response latencies
RT-MPT:多项处理树模型和响应延迟
- 批准号:
314672073 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Reinhart Koselleck Projects
An INUS theory of causal conditional reasoning
因果条件推理的 INUS 理论
- 批准号:
262770274 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
The Invariance Assumption of the Process Dissociation Model
过程分离模型的不变性假设
- 批准号:
207517907 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Testing and extending a dual-source model of everyday conditional reasoning
测试和扩展日常条件推理的双源模型
- 批准号:
200771736 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Priority Programmes
The flexibility of models of recognition memory
识别记忆模型的灵活性
- 批准号:
196535265 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Dissoziation räumlicher und visueller Komponenten des Arbeitsgedächtnisses
工作记忆的空间和视觉成分的分离
- 批准号:
5403248 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Anatomie des "Implicit Association Test"
“内隐联想测试”的剖析
- 批准号:
5346234 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Modellierung der sozialen Kategorisierung im "Who said what?"-Paradigma
在“谁说什么?”范式中建模社会分类
- 批准号:
5126056 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Mechanismen von Effekten affektiven Primings
情感启动效应的机制
- 批准号:
5168180 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
“新就业”平台中歧视行为的识别、形成机理与治理研究
- 批准号:72371192
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
数字经济下网络效应对价格歧视、市场竞争及社会福利的影响
- 批准号:72303008
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
歧视性户籍政策、城市补贴竞争与中国不同技能劳动力的空间分布:机理、效应与政策分析
- 批准号:72273129
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
算法社会中歧视扩散的机制、诊断与应对研究
- 批准号:
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
数字金融算法统计歧视和轴辐算法合谋治理对消费者权益保护效果的计算实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
- 批准号:
10600819 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A new class of biosensors for detecting signaling dynamics without live-cell microscopy
无需活细胞显微镜即可检测信号动态的新型生物传感器
- 批准号:
10709472 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A new class of biosensors for detecting signaling dynamics without live-cell microscopy
无需活细胞显微镜即可检测信号动态的新型生物传感器
- 批准号:
10337472 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
- 批准号:
9395599 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Renewal: Terahertz Polarization Imaging for Detecting Breast Tumor Margins
更新:用于检测乳腺肿瘤边缘的太赫兹偏振成像
- 批准号:
10201049 - 财政年份:2017
- 资助金额:
-- - 项目类别: