Asymptotic behavior for wave equations with damping term

带阻尼项的波动方程的渐近行为

基本信息

  • 批准号:
    17540173
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

We considered the initial value problem of the abstract wave equation with dissipation whose coefficient tends to 0 as t tends to infinity. It is known that the solution of the wave equation with a constant the dissipative term is asymptotically free if the constant of the dissipation decays with the polynomial order less than-1. On the other hand, in the case that the coefficient of the dissipation is a positive constant, it is known that the difference between the solution of the abstract wave equation and the solution of the corresponding abstract heat equation decays faster than each of the solution does (diffusion phenomenon). In this research, we showed the decay estimate of the difference between the solution of the abstract wave equation with decaying dissipative term and the solution of the corresponding abstract parabolic equation. As applications, we obtained the estimate of the difference between the solution of the dissipative wave equation with Dirichlet and Robin boundary conditions.Next, we considered the abstract quasilinear dissipative hyperbolic equation of Kirchhoff type. The unique existence of the global solution was known for sufficiently small initial data. We can easily show that this solution tends to the solution of the corresponding heat equation with a constant coefficient as the time tends to infinity. Then we considered the case that the dissipative Kirchhoff equation with parameter tends to the corresponding quasilinear parabolic equation. For every initial data, it is known that if the dissipative Kirchhoff equation is sufficiently close to the corresponding parabolic equation, the unique global solvability of the both equations and the estimate of difference between the solutions of the two equations. However the known estimates are local in time. We showed the global decay rate estimate combined with the asymptotic behavior.
我们考虑了带耗散的抽象波动方程的初值问题,其系数随着t趋于无穷大而趋于0。众所周知,如果耗散常数以小于-1的多项式阶次衰减,则具有常数耗散项的波动方程的解是渐近自由的。另一方面,在耗散系数为正常数的情况下,已知抽象波动方程的解与相应的抽象热方程的解之间的差异比每个解衰减得更快。 (扩散现象)。在这项研究中,我们展示了具有衰减耗散项的抽象波动方程的解与相应的抽象抛物线方程的解之间的差异的衰减估计。作为应用,我们得到了具有Dirichlet和Robin边界条件的耗散波动方程的解之间的差异的估计。接下来,我们考虑了Kirchhoff型的抽象拟线性耗散双曲方程。全局解的独特存在因足够小的初始数据而闻名。我们可以很容易地证明,随着时间趋于无穷大,该解趋向于对应的具有常系数的热方程的解。然后我们考虑带参数的耗散基尔霍夫方程趋向于相应的拟线性抛物型方程的情况。对于每个初始数据,已知如果耗散基尔霍夫方程足够接近相应的抛物线方程,则两个方程的唯一全局可解性以及两个方程的解之间的差异的估计。然而,已知的估计是局部时间的。我们展示了与渐近行为相结合的全局衰减率估计。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hele-Shawセル中を浮上する一つの泡のダイナミクスのシミュレーション
模拟 Hele-Shaw 池中单个气泡漂浮的动力学
Diffusion phenomenon for abstract wave equations with decaying dissipation
  • DOI:
    10.2969/aspm/04710363
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yamazaki
  • 通讯作者:
    T. Yamazaki
Convergence of a three-dimensional crystalline motion to Gauss curvature flow
三维晶体运动收敛于高斯曲率流
Non-uniqueness of self-similar shrinking curves for an anisotropic curvature flow
Blow-up problems for a semilinear heat equation with large diffusion
  • DOI:
    10.1016/j.jde.2004.10.021
  • 发表时间:
    2005-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kazuhiro Ishige;Hiroki Yagisita
  • 通讯作者:
    Kazuhiro Ishige;Hiroki Yagisita
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAZAKI Taeko其他文献

YAMAZAKI Taeko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAZAKI Taeko', 18)}}的其他基金

Asymptotic behavior and singular limit problem for dissipative hyperbolic equations
耗散双曲方程的渐近行为和奇异极限问题
  • 批准号:
    21540201
  • 财政年份:
    2009
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear hyperbolic-parabolic singular perturbation
非线性双曲-抛物线奇异摄动
  • 批准号:
    19540199
  • 财政年份:
    2007
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the time global solutions for the partial differential equations of Kirchhoff type
基尔霍夫型偏微分方程时间全局解的研究
  • 批准号:
    14540188
  • 财政年份:
    2002
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

On secular terms which appear in perturbation problems of non-linear wave forces acting on offshore structures, and solutions of the problems compared with model tests
海上结构物非线性波浪力扰动问题中出现的长期项及其与模型试验的比较
  • 批准号:
    15360461
  • 财政年份:
    2003
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of non-linear wave forces acting on an offshore structure in a shallow water and comparison with experiments
浅水中海上结构的非线性波浪力理论及与实验的比较
  • 批准号:
    12450406
  • 财政年份:
    2000
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STUDIES ON RELIABILITY ANALYSIS SYSTEMS OF LARGE FLOATING STRUCTURES
大型浮动结构可靠性分析系统研究
  • 批准号:
    08305041
  • 财政年份:
    1996
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了