Developments on Quantization and Quantum Information Analysis in terms of Infinite Dimensional Stochastic Analysis

无限维随机分析的量化和量子信息分析进展

基本信息

  • 批准号:
    17540136
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

We deeply appreciate the grant for scientific research (term : academic years 2005, 2006) from JSPS. In this research, we considered a quantization and a new approach to a quantum information analysis by researching the infinite dimensional stochastic analysis jointly from major fields : probability theory, analysis, non-commutative geometry, number theory and computer science.Main results which we obtained are the following 1) We constructed an infinite dimensional stochastic process associated with the Levy Laplacian on a space based on a stochastic process given by difference between two independent Levy processes. Moreover we gave a necessary and sufficient condition for eigenfunctions of the Levy Laplacian, which has some relation to the quantum decomposition. 2) We can take a nuclear space based on the Levy trace as a domain of the Levy Laplacian and prove that the Levy Laplacian is an infinitesimal generator of an infinite dimensional Wiener process on this space. The state spac … More e of this construction of the stochastic process is new one which is different from the Cesaro Hilbert space introduced by Professor Accardi. 3) Introducing the quantum Levy Laplacian we applied the construction of the infinite dimensional stochastic process generated by the Levy Laplacian in 1) to that of the quantum stochastic process. This implies that the quantum stochastic process can be studied as an infinite dimensional stochastic analysis. The construction of infinite dimensional stochastic processes which the author researched is connected with the quantum information analysis. This result is also connected with the quantum computation. 4) We obtained a relationship between the Levy Laplacian and an infinite dimensional Fractional Ornstein-Uhlenbeck process. This relationship is important to be applied the stochastic analysis based on the Levy Laplacian for the mathematical finance. Moreover we can extend this result to get a relationship between the Laplacian and a general infinite dimensional Ornstein-Uhlenbeck process. We also can obtain some relationship between the quantum Fractional Ornstein-Uhlenbeck process and the quantum Levy Laplacian.By the above research, in particular, we have started a new joint work with Professor Accardi of Volterra Center in University of Rome, and a joint program between Department of Mathematics in our University and the Volterra Center. We also have started a new joint research on the Levy Laplacian on the abstract Wiener space with Professor Kuo of Louisiana State University in USA, which is developed to fruitful results in quantum theory. Less
我们深入了解JSP的科学研究(学期:2005年,2005年),通过研究无限的维度随机分析,共同研究了量子信息分析的新方法。数字理论和计算机有限的代数随机措施与laplacian相关的空间基于独立的征量解压缩。拉普拉斯(Laplacian)是状态空格上无限型原始质量的无限发电机...他是新的过程与accardi教授引入的cesaro hilbert空间不同。征收laplacian在1个uantum的随机过程中,这意味着tothastic sisis可以在无限的尺寸随机过程中。无限的Ornstein-uhleck ESS。 Laplacian。通过上述研究,尤其是罗马大学的Olterra中心,HABE还与美国路易斯安那州立大学的Kuo一起开始了一项关于摘要Wiener空间的联合研究。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic process associated with a sum of the Levy Laplacian
与 Levy Laplacian 总和相关的随机过程
Infinite Dimensional Harmonic Analysis III
无限维谐波分析 III
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Heyer;T.Hirai;T.Kawazoe;K.Saito
  • 通讯作者:
    K.Saito
An infinite dimensional Laplacian acting on some class of Levy white noise functionals
作用于某类 Levy 白噪声泛函的无限维拉普拉斯算子
Quantum Information V
量子信息V
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Hida;K.Saito
  • 通讯作者:
    K.Saito
Topics on noncanonical representations of Gaussian processes
关于高斯过程的非规范表示的主题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAITO Kimiaki其他文献

SAITO Kimiaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAITO Kimiaki', 18)}}的其他基金

Generalizations of infinite dimensional Laplacians, construction methods of stochastic processes and developments in quantum information analysis
无限维拉普拉斯算子的推广、随机过程的构造方法以及量子信息分析的发展
  • 批准号:
    21540151
  • 财政年份:
    2009
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructive research on infinite dimensional stochastic Processes and its applications to quantum information analysis
无限维随机过程的建设性研究及其在量子信息分析中的应用
  • 批准号:
    19540201
  • 财政年份:
    2007
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Stochastic Processes and the Information Analysis
无限维随机过程与信息分析
  • 批准号:
    15540141
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Stochastic Analysis and its Applications
无限维随机分析及其应用
  • 批准号:
    11640139
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Analysis and its Applications
无限维分析及其应用
  • 批准号:
    09640300
  • 财政年份:
    1997
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

数字孪生驱动的车联网脆弱性动态量化评估研究
  • 批准号:
    62362053
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
一种面向未来智能交通系统的准确、鲁棒、轻量化跨相机车辆跟踪系统
  • 批准号:
    62311530096
  • 批准年份:
    2023
  • 资助金额:
    9 万元
  • 项目类别:
    国际(地区)合作与交流项目
华北平原“漏斗区”休耕政策成效量化及其地下水影响机制研究
  • 批准号:
    42371311
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
联合样本解纠缠和动态轨迹量化的无监督域自适应行人重识别
  • 批准号:
    62371209
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数学物理问题中正则化模型的不确定性量化分析
  • 批准号:
    12371423
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Establishment of computational intelligence based on quantum information theory and quantum biology and intelligent sensing processing applications
基于量子信息论和量子生物学的计算智能建立及智能传感处理应用
  • 批准号:
    16K00337
  • 财政年份:
    2016
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information Spectrum Methods Revisited -- Mathematical Foundations of Quantum Information Theory --
重温信息谱方法——量子信息论的数学基础——
  • 批准号:
    16K00012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advances in crossover between quantum information theory and quantum computational complexity theory
量子信息论与量子计算复杂性理论交叉研究进展
  • 批准号:
    21300002
  • 财政年份:
    2009
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimization via Quantum Information Combinatorics and Its Applications to Extend Fundamentals of Quantum Information Science and Technology
量子信息组合优化及其在扩展量子信息科学与技术基础方面的应用
  • 批准号:
    17300001
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Developments of Information-Spectrum Theory
信息谱理论的新进展
  • 批准号:
    13650401
  • 财政年份:
    2001
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了