Invariants of knots and 3-manifolds
结和 3 流形的不变量
基本信息
- 批准号:17540073
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I organized researches on invariants of knots and 3-manifolds. I presented the 2-loop polynomial of a knot by using finite type invariants of degree * 4 of a spine of a Seifert surface of the knot, from the viewpoint that I regard the 2-loop polynomial of a knot as an "equivariant Casson invariant" of the infinite cyclic cover of the complement of the knot. Further, I studied equivariant quantum invariants of the infinite cyclic cover of the complement of a knot, which unify quantum invariants of finite covers branched along the knot. Further, I constructed invariants of knots from equivariant linking matrices of their surgery presentations, from the viewpoint of studying equivariant quantum U(1) invariant of the infinite cyclic covers of the complements of the knots. Furthermore, I formulated a perturbative invariant of a 3-manifold with the first Betti number 1 in a certain case, as the arithmetic perturbative expansion of quantum invariants of the 3-manifold.I organized a low-dimensional topology seminar, jointly with Kazuo Habiro, who is a co-investigator of this research. The speakers were Yoko Mizuma, Takahito Kuriya, Soeren Hansen, Alexander Stoimenow, Vladimir Turaev, Alexis Virelizier, Gwenael Massuyeau, Masamichi Takase, and their talks were on advanced topics in the area of invariants of knots and 3-manifolds. I think their talks were very good, from the viewpoint of joint researches between them and me and the co-investigator, and from the viewpoint of research interactions between them and young researchers such as graduate students.
我组织了关于结和3个manifolds的不变的研究。我通过使用有限型不变性 * 4的脊柱脊柱的有限型不变式来呈现结的2环多项式,从我认为打结的2环多项式作为“ ecasson dopariant variant novariant noviant, “结的无限循环盖。此外,我研究了一个结的无限循环盖的量子化量子不变,该覆盖物的补充是一个有限覆盖的量子不变的量子覆盖沿结的有限覆盖物。此外,我是通过在研究等量子量子u(1)无限循环覆盖物的无限循环盖的角度来构建了与他们手术表现的矩阵相关的矩阵的不变的。此外,我在某个情况下制定了一个3个模型的扰动不变,第一个betti数字为1,因为3- manifold.i的量子不变性的算术扰动扩展组织了一个低维拓扑,与Kazuo habiro habiro habiro habiro habiro habiro in ,他是这项研究的共同评估者。演讲者是Mizuma Yoko Mizuma,Takahito Kuriya,Soeren Hansen,Alexander Stoimenow,Vladimir Turaev,Alexis virelizier,Gwenael Massuyeau,Masamichi Takase,他们的演讲及其在Knots of Knots of Knots of Knots of Knots and 3-Manifolds和3-Manifolds领域都在高级主题上。我认为,从我与我与共同研究者之间的共同研究的角度来看,他们的谈话非常好,从他们和研究生等年轻研究人员(例如研究生)之间的研究互动的角度来看。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Kontsevich integral of Brunnian links
关于 Brunnian 链的 Kontsevich 积分
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Habiro;Kazuo;Meilhan;Jean-Baptiste
- 通讯作者:Jean-Baptiste
An integral form of the quantized enveloping algebra of sl_2 and its completions
sl_2 的量化包络代数及其补全的积分形式
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kazuo Habiro;Brunnian links;Kazuo Habiro
- 通讯作者:Kazuo Habiro
Brunnian links, claspers and Goussarov-Vassiliev finite type invariants
Brunnian 链接、扣环和 Goussarov-Vassiliev 有限类型不变量
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kazuo Habiro;Brunnian links;Kazuo Habiro;Kazuo Habiro
- 通讯作者:Kazuo Habiro
Bottom tangles and universal invariants
- DOI:10.2140/agt.2006.6.1113
- 发表时间:2005-05
- 期刊:
- 影响因子:0.7
- 作者:K. Habiro
- 通讯作者:K. Habiro
Vanishing of 3-loop Jacobi diagrams of odd degree
奇次三环雅可比图的消失
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:D. Moskovich;T. Ohtsuki
- 通讯作者:T. Ohtsuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTSUKI Tomotada其他文献
OHTSUKI Tomotada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTSUKI Tomotada', 18)}}的其他基金
Equivariant invariants of knots and 3-manifolds
结和 3 流形的等变不变量
- 批准号:
21540077 - 财政年份:2009
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
19540073 - 财政年份:2007
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
15540063 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
- 批准号:
13640064 - 财政年份:2001
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
11640065 - 财政年份:1999
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
09640093 - 财政年份:1997
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research of relation among quantum invariant and number theoretic invariants and modular forms
量子不变量与数论不变量及模形式关系的研究
- 批准号:
17540067 - 财政年份:2005
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
15540063 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
- 批准号:
13640064 - 财政年份:2001
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological field theory and some problems on 3-manifolds
拓扑场论和3-流形的一些问题
- 批准号:
11640085 - 财政年份:1999
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
11640065 - 财政年份:1999
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)