Study on the asymptotic behavior of solutions for the nonlocal soliton equations in the zero dispersion limit

非局部孤子方程零色散极限解的渐近行为研究

基本信息

  • 批准号:
    16540196
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

1.New representation of the solutions for the nonlocal soliton equationsNew representations are obtained for the soliton and peiodic-wave solutions of the Benjamin-Ono and nonlocal nonlinear Schrodinger equations. Their derivation is based on a system of nonlinear algebraic equations. The method used here differs from the corresponding derivation by means of the inverse scattering method.2.Parametric representation of the multisoliton solution for the Camassa-Holm equationThe multisoliton solution (N-soliton solution) of the Camassa-Holm (CH) equation is constructed by means of the Hodograph transformation. Unlike the usual representation for the soliton solutions, it has a parametric representation. The large time asymptotic of the solution is derived and the formula for the phase shift is obtained.3.Multisoliton solutions of the Degasperis-Procesi equation and their peakon limitUsing the procedure similar to that used for the CH equation, the one- and two-soliton solutions of the Degaspeis-Procesi (DP) equation are constructed and their properties are explored in detail. A remarkable feature of the one-soliton solution is that the amplitude depends on its velocity nonlinearly. The peakon solution is reduced from the soliton solution by taking the zero dispersion limit. The asymptotic form of the two-soliton solution is also derived together with the associated formula for the phase shift. In a subsequent study, the general N-soliton solution is obtained for the DP equation and its property is examined.
1.非局域孤子方程解的新表示形式获得了Benjamin-Ono和非局域非线性薛定谔方程的孤子解和周期波解的新表示形式。它们的推导基于非线性代数方程组。这里使用的方法与相应的逆散射法推导不同。2.Camassa-Holm方程多孤子解的参数化表示Camassa-Holm(CH)方程的多孤子解(N-孤子解)的构造通过 Hodograph 变换。与孤子解的通常表示不同,它具有参数表示。推导了该解的大时间渐近性,并得到了相移的公式。 3. Degasperis-Procesi 方程的多孤子解及其峰值极限 使用与 CH 方程类似的过程,可以得到一阶和二阶解构造了 Degaspeis-Procesi (DP) 方程的孤子解,并详细探讨了它们的性质。单孤子解的一个显着特征是振幅非线性地取决于其速度。通过取零色散极限,将孤子解简化为峰值解。还导出了双孤子解的渐近形式以及相移的相关公式。在随后的研究中,获得了DP方程的一般N-孤子解并检验了其性质。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intermediate value theorem for functions on classes of Riemann surfaces
黎曼曲面类上函数的中值定理
Free boundary problem for one-dimensional motions of compressible gas and vacuum
Circularizable domains on Riemann surfaces
黎曼曲面上的可圆化域
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Masumoto;and M. Shiba
  • 通讯作者:
    and M. Shiba
New representation of multiperiodic and multisoliton solutions for a class of nonlocal soliton equations
一类非局部孤子方程多周期和多孤子解的新表示
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.-U.Ryu;A.Yagi;Y.Goto;F.Kobayashi;M.Efendiev;J-H.Ha;Y.Matsuno;S.Haruki;Y.Naito;Y.Matsuno;Y.Naito;F.Kojima;Y.Matsuno;Y.Matsuno
  • 通讯作者:
    Y.Matsuno
New representation of multiperiodic and multisoliton solution for a class of nonlocal soliton equations
一类非局部孤子方程多周期多孤子解的新表示
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUNO Yoshimasa其他文献

MATSUNO Yoshimasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUNO Yoshimasa', 18)}}的其他基金

Study on the initial value problems for a new type of nonlinear dispersive wave equations
新型非线性色散波动方程初值问题研究
  • 批准号:
    22540228
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the behavior of solutions in the zero dispersion limit of the nonlinear wave equations with the integral kernel
带积分核的非线性波动方程零色散极限解的行为研究
  • 批准号:
    14540209
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

非线性波动方程组的高精度高效保物理特性的数值方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维外区域上非线性波动方程解的长时间行为
  • 批准号:
    12271487
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
非线性随机波动方程的随机保结构算法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性时间分数阶波动方程解的存在性及正则性研究
  • 批准号:
    12101142
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机非线性波动方程的有效动力学
  • 批准号:
    12171343
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of traveling wave and interfacial dynamics in nonlinear diffusion equation
非线性扩散方程中的行波和界面动力学研究
  • 批准号:
    16K05245
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The analysis of effects by derivative loss in the fundamental solution of the high-dimensional wave equation on nonlinear problems
高维波动方程基本解对非线性问题导数损失的影响分析
  • 批准号:
    15K04964
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
  • 批准号:
    15K06075
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the lifespan and asymptotic behavior of solutions to systems of wave equations with nonlinear terms of long range effects
关于具有长程效应非线性项的波动方程组解的寿命和渐近行为
  • 批准号:
    15K04955
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了