Study on the asymptotic behavior of solutions for the nonlocal soliton equations in the zero dispersion limit

非局部孤子方程零色散极限解的渐近行为研究

基本信息

  • 批准号:
    16540196
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

1.New representation of the solutions for the nonlocal soliton equationsNew representations are obtained for the soliton and peiodic-wave solutions of the Benjamin-Ono and nonlocal nonlinear Schrodinger equations. Their derivation is based on a system of nonlinear algebraic equations. The method used here differs from the corresponding derivation by means of the inverse scattering method.2.Parametric representation of the multisoliton solution for the Camassa-Holm equationThe multisoliton solution (N-soliton solution) of the Camassa-Holm (CH) equation is constructed by means of the Hodograph transformation. Unlike the usual representation for the soliton solutions, it has a parametric representation. The large time asymptotic of the solution is derived and the formula for the phase shift is obtained.3.Multisoliton solutions of the Degasperis-Procesi equation and their peakon limitUsing the procedure similar to that used for the CH equation, the one- and two-soliton solutions of the Degaspeis-Procesi (DP) equation are constructed and their properties are explored in detail. A remarkable feature of the one-soliton solution is that the amplitude depends on its velocity nonlinearly. The peakon solution is reduced from the soliton solution by taking the zero dispersion limit. The asymptotic form of the two-soliton solution is also derived together with the associated formula for the phase shift. In a subsequent study, the general N-soliton solution is obtained for the DP equation and its property is examined.
1.对于本杰明蛋白 - 单位和非局部非线性非线性schrodinger方程的孤子和peiodic波溶液,获得了非局部孤子方程式New表示溶液的新溶液。它们的推导基于非线性代数方程系统。此处使用的方法与相应的衍生方法通过逆散射方法不同。2。Camassa-Holm方程的MultiSoliton溶液的参数表示,Camassa-Holm(CH)方程的Multisoliton溶液(N-SOLITON溶液)是通过Hoshodographsoptry Transformation构建的。与孤子解决方案的通常表示不同,它具有参数表示。得出了溶液的较大时间渐近性,并获得了相移的公式。3.Degasperis-Procosi方程及其peamon的多菌液解决方案限制了与CH方程相似的过程,单一和两索子溶液的degaspeis-procesi(dp)平等溶液构建了属性,并构建了属性。单索顿解决方案的一个显着特征是振幅非线性取决于其速度。通过取零色散极限,从孤子溶液中降低了峰溶液。两索溶液的渐近形式也与相关的相关公式一起得出。在随后的研究中,获得了DP方程的一般N-Soliton解决方案,并检查了其性质。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intermediate value theorem for functions on classes of Riemann surfaces
黎曼曲面类上函数的中值定理
Free boundary problem for one-dimensional motions of compressible gas and vacuum
Circularizable domains on Riemann surfaces
黎曼曲面上的可圆化域
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Masumoto;and M. Shiba
  • 通讯作者:
    and M. Shiba
New representation of multiperiodic and multisoliton solutions for a class of nonlocal soliton equations
一类非局部孤子方程多周期和多孤子解的新表示
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.-U.Ryu;A.Yagi;Y.Goto;F.Kobayashi;M.Efendiev;J-H.Ha;Y.Matsuno;S.Haruki;Y.Naito;Y.Matsuno;Y.Naito;F.Kojima;Y.Matsuno;Y.Matsuno
  • 通讯作者:
    Y.Matsuno
New representation of multiperiodic and multisoliton solution for a class of nonlocal soliton equations
一类非局部孤子方程多周期多孤子解的新表示
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUNO Yoshimasa其他文献

MATSUNO Yoshimasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUNO Yoshimasa', 18)}}的其他基金

Study on the initial value problems for a new type of nonlinear dispersive wave equations
新型非线性色散波动方程初值问题研究
  • 批准号:
    22540228
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the behavior of solutions in the zero dispersion limit of the nonlinear wave equations with the integral kernel
带积分核的非线性波动方程零色散极限解的行为研究
  • 批准号:
    14540209
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

非线性波方程外区域初边值问题的长时间动力学性质研究
  • 批准号:
    12371239
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
对数非线性薛定谔方程孤立波解的相关变分问题
  • 批准号:
    12371118
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
非线性薛定谔方程多波包爆破解和多孤立波解的研究
  • 批准号:
    12371122
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非线性四阶波方程解的渐进行为问题研究
  • 批准号:
    12301116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
若干重要非线性波方程中的Ermakov结构及相关问题的研究
  • 批准号:
    12371250
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of traveling wave and interfacial dynamics in nonlinear diffusion equation
非线性扩散方程中的行波和界面动力学研究
  • 批准号:
    16K05245
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The analysis of effects by derivative loss in the fundamental solution of the high-dimensional wave equation on nonlinear problems
高维波动方程基本解对非线性问题导数损失的影响分析
  • 批准号:
    15K04964
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
  • 批准号:
    15K06075
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the lifespan and asymptotic behavior of solutions to systems of wave equations with nonlinear terms of long range effects
关于具有长程效应非线性项的波动方程组解的寿命和渐近行为
  • 批准号:
    15K04955
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了