Study on transit layers of the Boltzmann equation

玻尔兹曼方程传输层的研究

基本信息

  • 批准号:
    16540185
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

The purpose of the present study is to clarify some properties of transit layers of the Boltzmann equation. In general, nonlinear partial differential equations, which describe complex phenomena in various fields of mathematical sciences, are investigated on fundamental mathematical structures of solutions, including the existence, uniqueness and asymptotic behavior, with the help of functional analysis, harmonic analysis, operator theory, theory of bifurcation and so on. Applications are made for the Navier-Stokes, Boltzmann and related equations which govern the motion of fluids, on the time-global existence of solutions, multi-scale analysis which establishes the asymptotic relations between these equations, bifurcating solutions, shock wave profiles, and mathematical mechanism of the development of transit layers. The theory of chaos is also investigated, which aims at qualitative and quantitative descriptions of complexity of behaviors of solutions to nonlinear equations. The chaos implies the difficulty of prediction of phenomena governed by the deterministic (non-probabilistic) law of motion, as shown by the famous Lorenz equation. The theory of chaos is now well-established for systems of finite degree. In particular, it is known that the existence of scrambled sets of Li-Yorke type implies the chaos. However, no concrete examples having scrambled sets are known of systems of infinite degree such as nonlinear partial differential equations. The condition for systems of finite degree with infinite dimensional compact perturbations to have the scrambled set is studied. Along this line, we have investigated transit layers of the Boltzmann equation. In addition, relations of between nonlinear differential equations and quantum walks were also discussed from various aspects.
本研究的目的是阐明玻尔兹曼方程传输层的一些性质。一般来说,非线性偏微分方程描述了数学科学各个领域中的复杂现象,借助泛函分析、调和分析、算子理论等研究解的基本数学结构,包括存在性、唯一性和渐近行为。分岔理论等。应用纳维-斯托克斯方程、玻尔兹曼方程和控制流体运动的相关方程、解的时间全局存在性、建立这些方程之间渐近关系的多尺度分析、分叉解、冲击波剖面和传输层发展的数学机制。还研究了混沌理论,旨在定性和定量描述非线性方程解的行为的复杂性。正如著名的洛伦兹方程所示,混沌意味着预测受确定性(非概率性)运动定律支配的现象的难度。对于有限度系统,混沌理论现在已经很成熟。特别是,众所周知,Li-Yorke 型乱集的存在意味着混沌。然而,对于诸如非线性偏微分方程的无限次系统,还没有已知具有扰乱集合的具体例子。研究了具有无限维紧扰动的有限次系统具有置乱集的条件。沿着这条线,我们研究了玻尔兹曼方程的传输层。此外,还从多个方面讨论了非线性微分方程与量子行走之间的关系。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence of a weak solution in an infinite viscoelastic strip with a semi-infinite crack
具有半无限裂纹的无限粘弹性条弱解的存在性
A new type of limit theorems for the one-dimensional quantum random walk
A Path Integral Approach for Disordered Quantum Walks in One Dimension
  • DOI:
    10.1142/s0219477505002987
  • 发表时间:
    2004-06
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    N. Konno
  • 通讯作者:
    N. Konno
Coexistence results for a spatial stochastic epidemic model
空间随机流行病模型的共存结果
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Konno;R.Schinazi;H.Tanemura
  • 通讯作者:
    H.Tanemura
Time-periodic solutions of the Boltzmann equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KONNO Norio其他文献

KONNO Norio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KONNO Norio', 18)}}的其他基金

Towards the construction of a unified theory of stochastic and quantum models on complex networks
构建复杂网络上随机和量子模型的统一理论
  • 批准号:
    15K13443
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on classical and quantum models on graphs
图上的经典模型和量子模型研究
  • 批准号:
    24540116
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on stochastic and quantum models on complex networks
复杂网络的随机和量子模型研究
  • 批准号:
    21540118
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on phase transition for interacting particle systems
相互作用粒子系统的相变研究
  • 批准号:
    12440024
  • 财政年份:
    2000
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis on Interacting Particle Systems Based on a New Type of Correlation Inequalities
基于新型相关不等式的相互作用粒子系统分析
  • 批准号:
    09640250
  • 财政年份:
    1997
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基团改性rGO在碳基无空穴传输层型钙钛矿太阳电池中的界面能级调控
  • 批准号:
    22372078
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可微分三维辐射传输建模与高分辨率冠层参数反演
  • 批准号:
    42371345
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于孔-孔耦合效应的纤维素基多分子层纳米孔道阵列结构设计及其在盐差能转化中离子传输机制的研究
  • 批准号:
    22308030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内磁层磁结构内等离子体波的传输特性及波粒相互作用研究
  • 批准号:
    42374187
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
以二维层状材料为传输层构筑高性能蓝光Ag-Ga-Zn-S纳米晶电致发光器件
  • 批准号:
    62375012
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了