Viscosity solutions of nonlinear variational inequalities and their applications

非线性变分不等式的粘度解及其应用

基本信息

  • 批准号:
    16540160
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The purpose of this study is to solve the optimization problems in mathematical economics and mathematical finance by applications of the modern theory in stochastic control. The study in this period focuses on the smoothness of viscosity solutions of the nonlinear variational inequalities and elliptic equations.Due to the grant, the results will be published in the book entitled:Stochastic Control and Mathematical Modelling in Economics.The main idea to solve these optimization problems is summarized as follows:(a) We formulate the problem and define the value function.(b) We verify that the Dynamic Programming Principle (DPP) holds for the value function.(c) By the DPP, the value function becomes a unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the problem.(d) By the uniqueness of viscosity solutions and the existence of a unique classical solution of the boundary value problem for the HJB equation, we obtain the smoothness of the viscosity solution of the HJB equation.(e) By the solution of the HJB equation, we construct an optimal policy.
这项研究的目的是通过随机控制中的现代理论的应用来解决数学经济学和数学融资中的优化问题。此期间的研究重点是非线性变化不平等和椭圆方程的粘度解决方案的平稳性。优化问题总结如下:(a)我们提出问题并定义了值函数。(b)我们验证动态编程原理(DPP)是否为该值函数保留。(c)由DPP,值函数变为汉密尔顿 - 雅各比 - 贝尔曼(HJB)方程的独特粘度解决方案与问题相关。(d)通过粘度解决方案的唯一性以及HJB方程边界值问题的独特经典解决方案的存在,我们获得了HJB方程的粘度解的平滑度。(e)通过HJB方程的解,我们构建了一个最佳策略。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-run average welfarte in a pollusion accumlation model
污染累积模型中的长期平均福利
Long-run average welfare in a pollution accumulation model
污染累积模型中的长期平均福利
経済学はじめの1歩-モデル分析の基礎
经济学的第一步——模型分析基础
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口和仁;森本宏明
  • 通讯作者:
    森本宏明
The probabilistic solution of the Dirichlet problem for degenerate elliptic equations
简并椭圆方程狄利克雷问题的概率解
An extension of the linear regulator for degenerate diffusions
简并扩散线性调节器的扩展
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORIMOTO Hiroaki其他文献

MORIMOTO Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORIMOTO Hiroaki', 18)}}的其他基金

Theory of viscosity solutions for nonlinear variational inequalities and its applications
非线性变分不等式的粘度解理论及其应用
  • 批准号:
    21540188
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STUDIES ON PROGRESSION OF EXPLOSIVE SPALLING OF CONCRETE
混凝土爆炸剥落过程的研究
  • 批准号:
    19560459
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification on the Spalling of Concrete Exposed to Fire
关于混凝土遇火剥落的澄清
  • 批准号:
    17560406
  • 财政年份:
    2005
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on non-linear variational inequalities by viscosity solutions
粘性解非线性变分不等式的研究
  • 批准号:
    14540178
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimization in stochastic systems and applications to consumption problems
随机系统优化及其在消耗问题中的应用
  • 批准号:
    11640126
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the Evaluation of Influence of Creep on Autogenous Shrinkage Stress
蠕变对自收缩应力影响的评价研究
  • 批准号:
    09650506
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Study of viscosity of concentrated electrolyte solutions by means of GHz viscometry
利用 GHz 粘度计研究浓电解质溶液的粘度
  • 批准号:
    23K04665
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
  • 批准号:
    23K03175
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Ophthalmic Product for Corneal Infections and Injuries
用于治疗角膜感染和损伤的新型眼科产品
  • 批准号:
    10156366
  • 财政年份:
    2021
  • 资助金额:
    $ 2.05万
  • 项目类别:
Properties of Discontinuous Viscosity Solutions
不连续粘度溶液的性质
  • 批准号:
    552287-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.05万
  • 项目类别:
    University Undergraduate Student Research Awards
Hamilton-Jacobi equations on metric measure spaces
度量测度空间上的 Hamilton-Jacobi 方程
  • 批准号:
    20K22315
  • 财政年份:
    2020
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了