Integral geometry and variational problems in homogeneous spaces
齐次空间中的积分几何和变分问题
基本信息
- 批准号:16540051
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last academic year we established a Crofton formula in Riemannian symmetric spaces by the use of reflective submaifolds, which is totally geodesic. In order to get explicite expression of the Crofton formula we need some geometric invariants of submanifolds. In the case where the head investigator gave an explicit expression of Poincare formula of submanifolds in complex space forms, he introduced a notion of multiple Kahler angle. By the use of the multiple Kahler angle he could obtain an explicit Crofton formula of submanifolds in complex space forms. For the purpose that we extend the class of submanifolds we use in Crofton formula in Riemannian symmetric spaces, we extend the notion of reflective submanifolds to that of weakly reflective submanifolds. Weakly reflective submanifolds are special ones of minimal submanifolds. Some arguments show that austere submanifolds are weakly reflective. In order to get austere submanifolds in the spheres we described a condition for a submanifold to be austere among the orbits of the linear isotropy actions of Riemannian symmetric pairs. As a result of this we obtained a classification of austere orbits in the spheres under the linear isotropy actions. We observed that some of them are invariant under an isometry of the sphere which reverses the submanifold with respect to the normal directions. So we called such submanifolds weakly reflective submanifolds and started our research of weakly reflective submanifolds.
在最后一学年,我们通过使用反射式submaifolds建立了Riemannian对称空间中的Crofton公式,这完全是大地的。为了获得Crofton公式的显式表达,我们需要一些子手机的几何不变。如果主管调查员以复杂的空间形式对Submanifolds的Poincare公式表示明确表达,则他引入了多个Kahler角度的概念。通过使用多个Kahler角度,他可以在复杂的空间形式中获得Submanifolds的明确Crofton公式。为了将我们在Riemannian对称空间中使用的Submanifold类别扩展到crofton公式中,我们将反射性子策略的概念扩展到弱反射性的子手势的概念。弱反射性的子手势是最小的亚曼叶夫的特殊submanifolds。一些论点表明,严峻的子曼福尔德反射较弱。为了在球体中获得严峻的子延伸,我们描述了子曼群在riemannian对称对的线性各向同性动作的轨道中均匀的条件。结果,我们在线性各向同性作用下获得了球体中的严重轨道的分类。我们观察到,其中一些是在球体的等轴测图下不变的,该球体相对于正常方向逆转了子序列。因此,我们称这样的submanifolds弱反思性的子曼属群,并开始研究弱反思性的子曼叶。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformations of super-minimal J-holomorphic curves of a 6-dimensional sphere
6维球体超最小J全纯曲线的变形
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:H;Hashimoto
- 通讯作者:Hashimoto
PROJECTIVE GEOMETRY OF FREUDENTHAL'S VARIETIES OF CERTAIN TYPE
- DOI:10.1307/mmj/1100623411
- 发表时间:2004-12
- 期刊:
- 影响因子:0.9
- 作者:Hajime Kaji;Osami Yasukura
- 通讯作者:Hajime Kaji;Osami Yasukura
Crofton formulae by reflective submanifolds in complex space forms
复杂空间形式中反射子流形的克罗夫顿公式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S. Goro;W. Heinzer;M. K.-Kim;Tasaki
- 通讯作者:Tasaki
Geometry of reflective submanifolds in Riemannian symmetric spaces
黎曼对称空间中反射子流形的几何
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Tasaki;Hiroyuki
- 通讯作者:Hiroyuki
Motion of charged particles in homogeneous Kahler and homogeneous Sasakian manifolds
齐次卡勒流形和齐次 Sasakian 流形中带电粒子的运动
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kaji;Yasukura;Kohhei Yamaguchi;Hashimoto;Kohhei Yamaguchi;Ikawa
- 通讯作者:Ikawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TASAKI Hiroyuki其他文献
TASAKI Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TASAKI Hiroyuki', 18)}}的其他基金
Extension and application of antipodal sets in symmetric spaces
对称空间中对映集的推广及应用
- 批准号:
15K04835 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of antipodal sets in symmetric spaces with its extension and application
对称空间对映集的研究及其推广与应用
- 批准号:
24540064 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research of the farming space in the Late Jomon period
绳文时代后期农耕空间研究
- 批准号:
22320157 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential geometry and integral geometry in homogeneous spaces and its applications
齐次空间中的微分几何和积分几何及其应用
- 批准号:
21540063 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integral geometry in homogeneous spaces and its applications
均匀空间中的积分几何及其应用
- 批准号:
18540065 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogeneous spaces and variational problems
齐次空间和变分问题
- 批准号:
14540058 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Division of labor in the Yayoi age and demonstrative research of a.c.system between groups : An approach from the viewpoint of the earthenware firing residue and stone implement production residue
弥生时代的分工与群体间交流制度的实证研究:从陶器烧制残渣和石器生产残渣的角度看
- 批准号:
13610469 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogeneous spaces and variational problems
齐次空间和变分问题
- 批准号:
12640058 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The pottery production and supply system in Yayoi period : An approach from the remains left by the pottery-firing
弥生时代陶器的生产和供应体系:从烧制陶器的遗迹看
- 批准号:
09610406 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
功能梯度材料瞬态传热问题的等几何边界元法及其反问题非迭代法研究
- 批准号:11872166
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Differential and Integral Operators on Riemann Surfaces and the Geometry and Algebra of Sewing
黎曼曲面上的微分和积分算子以及缝纫几何和代数
- 批准号:
RGPIN-2021-03351 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Differential and Integral Operators on Riemann Surfaces and the Geometry and Algebra of Sewing
黎曼曲面上的微分和积分算子以及缝纫几何和代数
- 批准号:
RGPIN-2021-03351 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Differential Forms in Integral Geometry
积分几何中的微分形式
- 批准号:
497356-2016 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
Differential geometry and integral geometry in homogeneous spaces and its applications
齐次空间中的微分几何和积分几何及其应用
- 批准号:
21540063 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systems of differential equations with group actions and their applications
具有群作用的微分方程组及其应用
- 批准号:
16340034 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)