Learning & Adaptation of Soft Computing Techniques Operating in the Nonstationary Environment

学习

基本信息

  • 批准号:
    16500129
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Despite the current matured state concerning the theory and applications of the soft computing techniques, there are still several problems to be settled. One of the most important problems might be : "How to cope with the nonstationary environment ?" Recently, the following idea hit me : "Fusion of learning automata and soft computing techniques may contribute a lot in finding a successful way for solving the above problem."In this research project, I was mainly involved in the research to investigate the learning performance of the hierarchical structure learning automata under the unknown nonstationary multiteacher environment in order to check whether this idea is OK. I was also involved to the research which deals with the real problems that contain rather strong nonlinearity.The following are our research results :1.We proposed a new learning algorithm for the hierarchical structure learning automata operating in the nonstationary multiteacher environment. We proved that the proposed algorithm ensures convergence with probability 1 to the optimal path under a certain nonstationary multiteacher environment.2.In order to compare the learning performance of the proposed algorithm in the nonstationary multiteacher environment with the algorithms DGPA and SE_<RI> (two of the fastest algorithms today), we carried out a rather large numbers of the computer simulations. The simulation results we obtained confirm the effectiveness of the proposed algorithm.3.We have applied neural networks and genetic algorithms to the fields of financial engineering & computer gaming. We succeeded in obtaining the following results :(1)Neural networks are quite helpful in order to predict the Golden Cross and the Dead Cross several weeks before they occur.(2)Fusion of neural networks and genetic algorithms is also quite helpful for finding an appropriate rule to make the Environmental Game much more exciting.
尽管当前关于软计算技术的理论和应用的成熟状态,但仍有几个问题要解决。最重要的问题之一可能是:“如何应对非组织环境?”最近,以下想法打动了我:“学习自动机和软计算技术的融合可能会在找到解决上述问题的成功方法方面做出很大贡献。”在这项研究项目中,我主要参与研究,以研究学习绩效在未知的非组织多教学环境下学习自动机的分层结构,以检查这个想法是否还可以。我还参与了处理包含相当强大非线性的实际问题的研究。以下是我们的研究结果:1。我们提出了一种在非机构多教学环境中运行的层次结构学习自动机的新学习算法。我们证明了所提出的算法确保在某个非组织多教师环境下与概率1融合到最佳路径。当今的两种最快的算法),我们进行了大量的计算机模拟。我们获得的仿真结果确认了拟议算法的有效性。3。我们已将神经网络和遗传算法应用于金融工程和计算机游戏领域。我们成功地获得了以下结果:(1)神经网络在预测金十字和死亡十字架发生前几周非常有帮助。(2)神经网络和遗传算法的融合也有助于找到找到一个适当的规则使环境游戏更加令人兴奋。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Utilization of Neural Networks and Genetic Algorithms to Make Game Playing More Exciting
利用神经网络和遗传算法让游戏玩起来更刺激
A New Learning Algorithm for the Hierarchical Structure Learning Automata Operating in the General Multiteacher Environment
通用多教师环境下分层结构学习自动机的新学习算法
Learning Behaviors of the Hierarchical Structure Learning Automata Operating in the General Nonstationary Multiteacher Environment
一般非平稳多教师环境下层次结构学习自动机的学习行为
An Intelligent Utilization of Neural Networks for Improving the Traditional Technical Analysis in the Stock Markets
智能利用神经网络改进股票市场的传统技术分析
A Consideration on the HSLA under the Nonstationary Multiteacher Environment and Their Application to Simulation and Gaming
非平稳多教师环境下 HSLA 的思考及其在仿真和游戏中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BABA Norio其他文献

BABA Norio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BABA Norio', 18)}}的其他基金

Practical development of a novel non-linear discrete image reconstruction method for electron tomography unaffected by the missing data range
不受缺失数据范围影响的新型电子断层扫描非线性离散图像重建方法的实际开发
  • 批准号:
    24510156
  • 财政年份:
    2012
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Learning automaton in a non-stationary environment - Towards the effective use of soft computing -
非平稳环境中的学习自动机 - 迈向软计算的有效利用 -
  • 批准号:
    23500277
  • 财政年份:
    2011
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of a novel electron tomographic reconstruction method based on a newly found property of image fine dots which convergently move to definitive positions
基于新发现的图像细点会聚移动到确定位置的特性,建立一种新型电子断层扫描重建方法
  • 批准号:
    21310075
  • 财政年份:
    2009
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reinforcement of the Performances of the Soft Computing Techniques & Utilization of the learning Automaton-Challenges Toward Nonstationary Environment
软计算技术性能的强化
  • 批准号:
    18500173
  • 财政年份:
    2006
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

面向异构图数据的自动机器学习模型研究
  • 批准号:
    62376064
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于学习自动机的随机次模性组合优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于神经网络结构和训练超参数联合搜索的自动机器学习技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向异构视频检索的自动机器学习理论与技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
基于规则学习元胞自动机的桥梁钢结构点蚀涌现预测理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Verifying AI systems by extracting automata via learning
通过学习提取自动机来验证人工智能系统
  • 批准号:
    2791125
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Studentship
Learning, Approximating and Minimising Streaming Automata for Large-scale Optimisation
用于大规模优化的学习、逼近和最小化流自动机
  • 批准号:
    EP/T018313/2
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Research Grant
Integrating Deep Learning, GIS, and Geographic Automata for Modelling Land Cover Change
集成深度学习、GIS 和地理自动机来建模土地覆盖变化
  • 批准号:
    547653-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Network of automata with data based on compositional active learning
基于组合主动学习的数据自动机网络
  • 批准号:
    21H03415
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrating Deep Learning, GIS, and Geographic Automata for Modelling Land Cover Change
集成深度学习、GIS 和地理自动机来建模土地覆盖变化
  • 批准号:
    547653-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了