A study of dynamic optimization of data acquisition system using GRID technology
利用GRID技术的数据采集系统动态优化研究
基本信息
- 批准号:15540295
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a conventional data acquisition system, the function and data flow of event builder and trigger processor are fixed, and there are possibilities of wasting resouces or performance bottleneck depending on the accelerator condition. The purpose of this study is to optimize the usage of the processors and the data flow dynamically by a real time monitoring of the processor load and the data flow rate. In the first year, the monitoring mechanism was developed using a test bench system consisting of 25 PC servers connected via a large GbE switch. The mechanism was realized utilizing Network Shared Memory(NSM) used for the Belle experiment and it was succeeded to make it work. The transfer speed between nodes was also measured using a GRID software called MICH-G2 and was confirmed to be more than 60MB/sec.In the second year, the development of the optimization mechanism of processor utilization and data flow was done. A dynamic change of processing function on a processor was realized by … More modularizing the processing software and replacing them using a dynamic link with the data acquisition framework. Together with a use of large ring buffers and socket connections implemented on each processing node, it was succeeded to change data flow path and/or processing function on a node without interrupting the data acquisition. As the last step, an algorithms to optimize system-wide performance was trying to be developed, however, we have not yet succeeded to develop the mechanism satisfying the real usage in the data acquisition system. A massive switch of the data flow path and processing software is observed to happen at some boundary during a gradual change in the data flow rate, resulting in a waste of resources. Sometimes a short stop of the data acquisition is observed during the switching. Therefore, we need to continue the effort to improve the optimization algorithm with some new technology like the neural-net.The mechanism developed for the monitoring of data flow and processor load was used for the real time reconstruction farm of the Belle experiment and it was reported at the international conference on Computing in High Energy Physics 04. Less
在传统的数据采集系统中,事件生成器和触发处理器的功能和数据流是固定的,并且根据加速器条件存在浪费资源或性能瓶颈的可能性。本研究的目的是优化处理器的使用。第一年,监控机制是使用由通过网络实现的大型 GbE 交换机连接的 25 台 PC 服务器组成的测试台系统开发的。 Belle实验中使用了共享内存(NSM),并且成功地使用了名为MICH-G2的GRID软件测量了节点之间的传输速度,并确认在第二年超过了60MB/秒。开发了处理器利用率和数据流的优化机制,通过将处理软件模块化并使用数据采集框架的动态链接来替换它们,从而实现了处理器上处理功能的动态变化。使用大型环形缓冲区和套接字连接在每个处理节点上实施,成功地在不中断数据采集的情况下改变节点上的数据流路径和/或处理功能。作为最后一步,我们正在尝试开发一种优化系统范围性能的算法。目前尚未成功开发出满足数据采集系统实际使用的机制,在数据流量逐渐变化的过程中,会在某些边界处观察到数据流路径和处理软件的大量切换,从而造成浪费。有时在切换期间会观察到数据采集的短暂停止。因此,我们需要继续努力利用神经网络等新技术来改进优化算法。为监控数据流和处理器负载而开发的机制被用于Belle实验的实时重建农场,并得到了很好的应用。在高能物理计算国际会议上的报告04. 少
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experience with Real Time Reconstruction Farm for Belle Experiment
贝尔实验实时重建农场经验
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:R.Itoh et al.
- 通讯作者:R.Itoh et al.
Experience with Real Time Reconstruction Farm for the Belle Experiment
贝尔实验实时重建农场的经验
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:R.Itoh et al.;R.Itoh et al.
- 通讯作者:R.Itoh et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOH Ryosuke其他文献
ITOH Ryosuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOH Ryosuke', 18)}}的其他基金
Study of a real time feed-back system by the pipeline distributed parallel processing
流水线分布式并行处理实时反馈系统的研究
- 批准号:
22540319 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于结晶板原位晶体衍射数据采集系统的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于5G和云计算机械加工过程数字孪生系统数据采集策略与优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于信息系统的科学基金项目申请数据采集规范与优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:专项基金项目
基于深度学习的BGP路由系统安全监测技术研究
- 批准号:61902083
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
抗雾霾光学遥感数据实时采集处理系统研究
- 批准号:U1904123
- 批准年份:2019
- 资助金额:35 万元
- 项目类别:联合基金项目
相似海外基金
"Grid-Tape": A High-Throughput Platform for Brain Connectomics and Nanoscale Structural Analysis
“Grid-Tape”:用于脑连接组学和纳米级结构分析的高通量平台
- 批准号:
10219050 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
"Grid-Tape": A High-Throughput Platform for Brain Connectomics and Nanoscale Structural Analysis
“Grid-Tape”:用于脑连接组学和纳米级结构分析的高通量平台
- 批准号:
10078761 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
"Grid-Tape": A High-Throughput Platform for Brain Connectomics and Nanoscale Structural Analysis
“Grid-Tape”:用于脑连接组学和纳米级结构分析的高通量平台
- 批准号:
9255254 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
MRI: Acquisition of a High Resolution Visualization System to Enable Large-Scale Data-Intensive Collaborative Research and Cyber-Learning using Grid Computing
MRI:获取高分辨率可视化系统,以利用网格计算实现大规模数据密集型协作研究和网络学习
- 批准号:
1229306 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
A synchronized moving grid (SMOG) system to improve CBCT for IGRT and ART
用于改进 IGRT 和 ART CBCT 的同步移动网格 (SMOG) 系统
- 批准号:
8400029 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别: