Studies on holomorphic mappings on the unit ball in an infinite dimensional space
无限维空间中单位球的全纯映射研究
基本信息
- 批准号:15540193
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)We consider some equalities of the Hamack type and its applications for holomorphic mappings on some infinite dimensional domain.(2)Let E be a complex Banach space with an unconditional Schauder bass. Let D be a pseudoconvex domain in E and let V be a closed complex submanifold in E. We assume that the dimension of V is finite or the coon of V for E is finite. We denote by O the sheaf of germs of all holomorphic fuctions on D. Then we show that H^P(D\V,O)=O for 1 □ p<codim_E V -1. Especially, if the dimension of V is finite and the dimension of E is infinite, then H^P(D\V,O)=0 for p≧1 and D\V is not pseudoconvex.By using this insult, we show that H^P(P(E),O) = 0 for 1 □ p<dim E -1, where P(E) is the complex projective space induced from E.(3)Let B be the unit ball in C^n with respect to an arbitrary norm and let f(z,t) be a g-Loewner chain such that e^<-t>f(z,t)-z has a zero of order k+1 at z=0. We obtain growth and covering theorems for f(・,0).Moreover, we consider coefficient bounds and examples of mappings in S_<g,k+1>^0(B).(4)Let B be the unit ball of a complex Banach space with respect to the noem. We obtain growth and covering theorems for some holomorphic mapping with parametric representaion, and consider various examples.
(1)我们在某些无限的尺寸上考虑了带有无主管的schauder bass上的holomorthics映射。有限。 p(d \ v,o)= 0对于p≧1,d \ v不是pseudoconvex。通过使用这种侮辱,我们证明h^p(p(e),o)= 0 for从E.(3)让B相对于任意规范,在C^n中为单位球,让F(z,t)为G-loewner链,使得e^<-t> f(z,z,z, z,z,t)-z在z z = 0处的k+1阶的零为零。我们获得了f(・,0)的生长和覆盖物。在s_ <g,k+1> ^0(b)中以外。 (4)让我们相对于NOEM的复杂的Banach空间。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holomorphic Mappings on Some Infinite Dimensional Domain
某个无限维域上的全纯映射
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Hirokawa;F.Hiroshima;H.Spohn;Tatsuhiro HONDA;Tatsuhiro HONDA
- 通讯作者:Tatsuhiro HONDA
Holomorphic mappings into some domain in a complex normed space
复杂赋范空间中某些域的全纯映射
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Hirokawa;F.Hiroshima;H.Spohn;Tatsuhiro Honda
- 通讯作者:Tatsuhiro Honda
The Frenkel's lemma in Banach spaces and its applications
Banach空间中的Frenkel引理及其应用
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Honda;M.Miyagi;M.Nishihara;S.Ohgai;M.Yoshida
- 通讯作者:M.Yoshida
Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation
- DOI:10.1016/j.jmaa.2005.08.002
- 发表时间:2006-05
- 期刊:
- 影响因子:1.3
- 作者:H. Hamada;Tatsuhiro Honda;G. Kohr
- 通讯作者:H. Hamada;Tatsuhiro Honda;G. Kohr
Holomorphic Mappings with Parametric Representation
具有参数表示的全纯映射
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Hirokawa;F.Hiroshima;H.Spohn;Tatsuhiro HONDA
- 通讯作者:Tatsuhiro HONDA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONDA Tatsuhiro其他文献
HONDA Tatsuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Loewner Theory on Universal Covering Map and Hyperbolic Metric
关于通用覆盖图和双曲度量的 Loewner 理论
- 批准号:
23K03150 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Loewner theory on deformation of universal covering maps
万能覆盖图变形的Loewner理论
- 批准号:
19K03519 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Correspondence between non-commutative probability, probability and univalent function theories
非交换概率、概率与单价函数理论之间的对应关系
- 批准号:
19K14546 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Loewner theory on universal covering maps
关于通用覆盖图的 Loewner 理论
- 批准号:
16K05206 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on free probability and its applications to probability, combinatorics and representation theories
自由概率研究及其在概率、组合学和表示论中的应用
- 批准号:
15K17549 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)