Studies on holomorphic mappings on the unit ball in an infinite dimensional space

无限维空间中单位球的全纯映射研究

基本信息

项目摘要

(1)We consider some equalities of the Hamack type and its applications for holomorphic mappings on some infinite dimensional domain.(2)Let E be a complex Banach space with an unconditional Schauder bass. Let D be a pseudoconvex domain in E and let V be a closed complex submanifold in E. We assume that the dimension of V is finite or the coon of V for E is finite. We denote by O the sheaf of germs of all holomorphic fuctions on D. Then we show that H^P(D\V,O)=O for 1 □ p<codim_E V -1. Especially, if the dimension of V is finite and the dimension of E is infinite, then H^P(D\V,O)=0 for p≧1 and D\V is not pseudoconvex.By using this insult, we show that H^P(P(E),O) = 0 for 1 □ p<dim E -1, where P(E) is the complex projective space induced from E.(3)Let B be the unit ball in C^n with respect to an arbitrary norm and let f(z,t) be a g-Loewner chain such that e^<-t>f(z,t)-z has a zero of order k+1 at z=0. We obtain growth and covering theorems for f(・,0).Moreover, we consider coefficient bounds and examples of mappings in S_<g,k+1>^0(B).(4)Let B be the unit ball of a complex Banach space with respect to the noem. We obtain growth and covering theorems for some holomorphic mapping with parametric representaion, and consider various examples.
(1)我们在某些无限的尺寸上考虑了带有无主管的schauder bass上的holomorthics映射。有限。 p(d \ v,o)= 0对于p≧1,d \ v不是pseudoconvex。通过使用这种侮辱,我们证明h^p(p(e),o)= 0 for从E.(3)让B相对于任意规范,在C^n中为单位球,让F(z,t)为G-loewner链,使得e^<-t> f(z,z,z, z,z,t)-z在z z = 0处的k+1阶的零为零。我们获得了f(・,0)的生长和覆盖物。在s_ <g,k+1> ^0(b)中以外。 (4)让我们相对于NOEM的复杂的Banach空间。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holomorphic Mappings on Some Infinite Dimensional Domain
某个无限维域上的全纯映射
Holomorphic mappings into some domain in a complex normed space
复杂赋范空间中某些域的全纯映射
The Frenkel's lemma in Banach spaces and its applications
Banach空间中的Frenkel引理及其应用
Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation
Holomorphic Mappings with Parametric Representation
具有参数表示的全纯映射
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HONDA Tatsuhiro其他文献

HONDA Tatsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Loewner Theory on Universal Covering Map and Hyperbolic Metric
关于通用覆盖图和双曲度量的 Loewner 理论
  • 批准号:
    23K03150
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Loewner theory on deformation of universal covering maps
万能覆盖图变形的Loewner理论
  • 批准号:
    19K03519
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Correspondence between non-commutative probability, probability and univalent function theories
非交换概率、概率与单价函数理论之间的对应关系
  • 批准号:
    19K14546
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Loewner theory on universal covering maps
关于通用覆盖图的 Loewner 理论
  • 批准号:
    16K05206
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on free probability and its applications to probability, combinatorics and representation theories
自由概率研究及其在概率、组合学和表示论中的应用
  • 批准号:
    15K17549
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了