Invariants of knots and 3-manifolds
结和 3 流形的不变量
基本信息
- 批准号:15540063
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I organized researches on invariants of knots and 3-manifolds.I edited the proceedings of the workshop "Invariants of Knots and 3-Manifolds", which I organized in September 2001, and published the proceedings from the journal Geometry and Topology Monographs. In particular, I edited a list of problems, which was made based on problems given in the problem sessions of the workshop, and published it as a part of the proceedings.I studied the loop expansion of the Kontsevich invariant, in particular, the 2-loop polynomial, which presents the 2-loop part of the loop expansion. I presented the 2-loop polynomial of a knot in terms of finite type invariants of a spine of a Seifert surface of the knot, from the viewpoint that I regard the 2-loop polynomial of a knot as an equivariant Casson invariant of the infinite cyclic cover of the knot complement. I obtained a bound of the degree of the 2-loop polynomial of a knot by twice the genus of the knot, by calculating the presentation concretely … More introducing Gaussian diagrams. Further, I gave explicit presentations of the 2-loop polynomial for the torus knots and the knots of genus 1. Furthermore, I showed a cabling formula for the 2-loop polynomial, which gives the 2-loop polynomial for any cable knot of a given knot.I organized a low-dimensional topology seminar, jointly with Kazuo Habiro, who is a co-investigator of this research. The speakers were Sergei Duzhin, Kazuhiro Hikami, Andrew Kricker, Julien Marche, Jean-Baptiste Meilhan, Gregor Masbaum, Jorgen Andersen, Yoshiyuki Yokota, Jozef Przytycki, and their talks were on advanced topics in the area of invariants of knots and 3-manifolds. In particular, by financial supports from the grant of this research, Kricker and Marche stayed at the RIMS in two weeks. I think their talks and stays were very good, from the viewpoint of joint researches between them and me and the co-investigator, and from the viewpoint of research interactions between them and young researchers such as graduate students. Less
我组织了调节和3个maniford的研究。I编辑了“结3个Manifolds的无害”研讨会,并于2001年9月组织了HO,并特别编辑了《几何学和拓扑》杂志。这是根据研讨会的问题进行的。我认为结的2循环圆环的圆环覆盖率是结合结的两倍的环。圆环结的2环多项式和属1的结构。演讲者与Kazuo Habiro共同的研讨会是Sergei Duzhin,Kazuhiro Hikami,Andrew Kricker,Andrew Kricker,Julian Marche,Jean-Baptiste Meilhan,Gregor Masbaum,Jorgen Andersen,Jorgen Andersen,Yoshiyuki,Yoshiyuki,Jozef Przytycki和他们的谈话和3个地区和3个地区。尤其是,通过这项研究的授予,克里克和马尔克在两周内保持了篮筐
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A cabling formula for the 2-loop polynomial of knots
结的 2 环多项式的布线公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Brittenham;C.Hayashi;M.Hirasawa;T.Kobayashi;K.Shimokawa;K.Sakai (with K.H.Lee);H.konno;M.Miyanishi;T.Ohtsuki
- 通讯作者:T.Ohtsuki
T.Ohtsuki: "A cabling formula for the 2-loop polynomial of knots"Publ.RIMS.Kyoto Univ.. (to appear).
T.Ohtsuki:“结的 2 环多项式的布线公式”Publ.RIMS.Kyoto Univ..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Problems on invariants of knots and 3-manifolds
关于结和 3 流形不变量的问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Mikami;T.Mizutani;T.Ohtsuki (ed.)
- 通讯作者:T.Ohtsuki (ed.)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTSUKI Tomotada其他文献
OHTSUKI Tomotada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTSUKI Tomotada', 18)}}的其他基金
Equivariant invariants of knots and 3-manifolds
结和 3 流形的等变不变量
- 批准号:
21540077 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
19540073 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
17540073 - 财政年份:2005
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
- 批准号:
13640064 - 财政年份:2001
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
11640065 - 财政年份:1999
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
09640093 - 财政年份:1997
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
17540073 - 财政年份:2005
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of relation among quantum invariant and number theoretic invariants and modular forms
量子不变量与数论不变量及模形式关系的研究
- 批准号:
17540067 - 财政年份:2005
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
- 批准号:
13640064 - 财政年份:2001
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological field theory and some problems on 3-manifolds
拓扑场论和3-流形的一些问题
- 批准号:
11640085 - 财政年份:1999
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
11640065 - 财政年份:1999
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)