Invariants of knots and 3-manifolds

结和 3 流形的不变量

基本信息

  • 批准号:
    15540063
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

I organized researches on invariants of knots and 3-manifolds.I edited the proceedings of the workshop "Invariants of Knots and 3-Manifolds", which I organized in September 2001, and published the proceedings from the journal Geometry and Topology Monographs. In particular, I edited a list of problems, which was made based on problems given in the problem sessions of the workshop, and published it as a part of the proceedings.I studied the loop expansion of the Kontsevich invariant, in particular, the 2-loop polynomial, which presents the 2-loop part of the loop expansion. I presented the 2-loop polynomial of a knot in terms of finite type invariants of a spine of a Seifert surface of the knot, from the viewpoint that I regard the 2-loop polynomial of a knot as an equivariant Casson invariant of the infinite cyclic cover of the knot complement. I obtained a bound of the degree of the 2-loop polynomial of a knot by twice the genus of the knot, by calculating the presentation concretely … More introducing Gaussian diagrams. Further, I gave explicit presentations of the 2-loop polynomial for the torus knots and the knots of genus 1. Furthermore, I showed a cabling formula for the 2-loop polynomial, which gives the 2-loop polynomial for any cable knot of a given knot.I organized a low-dimensional topology seminar, jointly with Kazuo Habiro, who is a co-investigator of this research. The speakers were Sergei Duzhin, Kazuhiro Hikami, Andrew Kricker, Julien Marche, Jean-Baptiste Meilhan, Gregor Masbaum, Jorgen Andersen, Yoshiyuki Yokota, Jozef Przytycki, and their talks were on advanced topics in the area of invariants of knots and 3-manifolds. In particular, by financial supports from the grant of this research, Kricker and Marche stayed at the RIMS in two weeks. I think their talks and stays were very good, from the viewpoint of joint researches between them and me and the co-investigator, and from the viewpoint of research interactions between them and young researchers such as graduate students. Less
我组织了我在2001年9月组织的研讨会“结和3个manifolds”研讨会的会议记录的研究,并从《几何学和拓扑专着》中发表了会议记录。特别是,我编辑了一系列问题列表,这些问题是根据研讨会的问题会议中给出的问题的,并将其作为程序的一部分发布。我以结的有限型脊柱的有限型不变性来介绍结的2环多项式,从我认为结的2环多项式视为结的无限循环盖。我通过结实地计算出呈递的表现,从而获得了结的两倍的结属。此外,我给出了2环的多项式的明确介绍。 研究。演讲者是Sergei Duzhin,Kazuhiro Hikami,Andrew Kricker,Julien Marche,Jean-Baptiste Meil​​han,Gregor Masbaum,Jorgen Andersen,Jorgen Andersen,Yoshiyuki Yokota,Jozef Przytycki,他们的对话以及他们在Invariant of Invariant of Invarianf of Invarianf of Invarys of Invarianf and of Invarys的对话。特别是,通过这项研究的授予,克里克(Kricker)和马尔凯(Marche)在两周内留在了轮辋。我认为,从我与我与共同研究者之间的共同研究的角度来看,他们与研究生(例如研究生)之间的研究互动的角度来看,他们的演讲和住宿非常好。较少的

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
結び目と3次元多様体の不変量
结和 3 流形的不变量
A cabling formula for the 2-loop polynomial of knots
结的 2 环多项式的布线公式
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Brittenham;C.Hayashi;M.Hirasawa;T.Kobayashi;K.Shimokawa;K.Sakai (with K.H.Lee);H.konno;M.Miyanishi;T.Ohtsuki
  • 通讯作者:
    T.Ohtsuki
Invariants of knots and 3-manifolds
结和 3 流形的不变量
T.Ohtsuki: "A cabling formula for the 2-loop polynomial of knots"Publ.RIMS.Kyoto Univ.. (to appear).
T.Ohtsuki:“结的 2 环多项式的布线公式”Publ.RIMS.Kyoto Univ..(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Problems on invariants of knots and 3-manifolds
关于结和 3 流形不变量的问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHTSUKI Tomotada其他文献

OHTSUKI Tomotada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHTSUKI Tomotada', 18)}}的其他基金

Equivariant invariants of knots and 3-manifolds
结和 3 流形的等变不变量
  • 批准号:
    21540077
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
  • 批准号:
    19540073
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
  • 批准号:
    17540073
  • 财政年份:
    2005
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
  • 批准号:
    13640064
  • 财政年份:
    2001
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
  • 批准号:
    11640065
  • 财政年份:
    1999
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
  • 批准号:
    09640093
  • 财政年份:
    1997
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Invariants of knots and 3-manifolds
结和 3 流形的不变量
  • 批准号:
    17540073
  • 财政年份:
    2005
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of relation among quantum invariant and number theoretic invariants and modular forms
量子不变量与数论不变量及模形式关系的研究
  • 批准号:
    17540067
  • 财政年份:
    2005
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
  • 批准号:
    13640064
  • 财政年份:
    2001
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological field theory and some problems on 3-manifolds
拓扑场论和3-流形的一些问题
  • 批准号:
    11640085
  • 财政年份:
    1999
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
  • 批准号:
    11640065
  • 财政年份:
    1999
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了