Geometry of mirror symmetry and string theory
镜像对称几何和弦理论
基本信息
- 批准号:15540010
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, the following results are obtained regarding non-compact Calabi-Yau varieties, their period integrals and differential equations satisfied them.Firstly, when a Calabi-Yau variety is given as the c_1 = 0 resolution of the singularity C^2/Z_<μ+1>, it is found that the period integrals are very close to the so-called primitive forms introduced by K.Saito. Since the period integrals are invariant under certain torus actions, we found that they satisfy a system of differential equations called Gel'fand-Kapranov-Zelvinski (GKZ) system. As a result we obtained a way to rephrase the theory of the primitive forms in terms of the GKZ system. It is known that the monodromy of the primitive forms is given by the Weyl group of the A_n root system. In our case, it is found that this Weyl group action is extended too the corresponding affine Weyl group actions on the period integrals.Secondly, we studied the cases of three dimensional singularity C^3/G (G⊂SL(3,C) : a finite abelian group) and its c_1 = 0 resolutions. We obtained a precise definition of the period integrals and their characterization in terms of the GKZ systems. We observed that the monodromy of the period integrals is closely related to the McKay correspondence which connects the representation theory to algebraic geometry. Namely, under mirror symmetry, the McKay correspondence is transformed to the theory of transcendental cycles, and for example, Fourier-Mukai transforms on the derived category of coherent sheaves appear as the monodromy of the period integrals. We verified this 'mirror monodromy relations' in explicit examples. This monodromy property has been made precise as a mathematical conjecture in terms of certain hypergeometric series taking its values in the relevant cohomology group.
在该研究项目中,获得了以下结果有关非紧缩的calabi-yau品种,它们的周期积分和差异化满足它们。 /z_<μ+1>,这是一个周期的积分,是由K.Saito集成的所谓原始形式。 (GKZ)作为ASASULT,我们获得了GKZ系统中原始形式的方法。它太过corresspond corresspond也太过了,周期积分。周期积分的精确定义及其在GKZ系统中的表征。例如,傅立叶在或骨上转换为时期积分的单型。
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Hosono, B.H.Lian, K.Oguiso, S.-T.Yau: "Kummer Structures on a K3 surface-an old question of T.Shioda"Duke Math.J.. 120. 635-687 (2003)
S.Hosono、B.H.Lian、K.Oguiso、S.-T.Yau:“K3 表面上的 Kummer 结构 - T.Shioda 的一个老问题”Duke Math.J.. 120. 635-687 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hosono: "Counting BPS states via holomorphic anomaly equations"Fields Inst.Commun.. 38. 57-86 (2003)
S.Hosono:“通过全纯异常方程计算 BPS 状态”Fields Inst.Commun.. 38. 57-86 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Autoequiucilences of a K3 surface and monodrony transformations
K3 曲面的自等价性和单数变换
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Hosono;B.H.Lian;K.Oguiso;S.-T.Yau
- 通讯作者:S.-T.Yau
S.Hosono, B.H.Lian, K.Oguiso, S.-T.Yau: "C=2 rational toroidal conformal field theories via Gauss product"Commun.Math.Phys.. 241. 245-286 (2003)
S.Hosono、B.H.Lian、K.Oguiso、S.-T.Yau:“通过高斯积的 C=2 有理环形共形场理论”Commun.Math.Phys.. 241. 245-286 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Autoequivalences of a K3 surface and monodromy transformations
K3 曲面的自等价性和单性变换
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Hosono;B.H.Lian;K.Oguiso;S.-T.Yau
- 通讯作者:S.-T.Yau
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HOSONO Shinobu其他文献
HOSONO Shinobu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HOSONO Shinobu', 18)}}的其他基金
Period integrals, mirror symmetry, and the geometry of Gromov-Witten invariants
周期积分、镜像对称和 Gromov-Witten 不变量的几何
- 批准号:
22540041 - 财政年份:2010
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Period integrals, derived categories, and geometries of Moduli spaces
模空间的周期积分、派生范畴和几何
- 批准号:
18540014 - 财政年份:2006
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
二维拓扑节线半金属及其多场调控的理论研究
- 批准号:11904205
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
功能固体材料的手性同质多晶型调控及其手性固定和应用
- 批准号:21273175
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
弦理论中的几何不变量
- 批准号:10631050
- 批准年份:2006
- 资助金额:130.0 万元
- 项目类别:重点项目
相似海外基金
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Fellowship Award
A Non-Archimedean Approach to Mirror Symmetry
镜像对称的非阿基米德方法
- 批准号:
2302095 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Fellowship