Computational Research on Cognition and Memory Mechanism in Neural Networks with Symmetric and Asymmetric Network Structures

对称与非对称网络结构神经网络认知与记忆机制的计算研究

基本信息

  • 批准号:
    15500134
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In the neural networks, one of the prominent features, is a parallel processing for the spatial information. It is not well discussed theoretically to clarify the key features for the parallel processing in the neural networks. In this research, it is shown that the asymmetrical nonlinear functions play an crucial role in the network parallel processing for the movement detection. The visual information is inputted first to the retinal neural networks, then it is transmitted to the relay neurons and finally is processed in the visual network of the cortex and the middle temporal area in the brain. In these networks, it is reported that this kind of nonlinear functions will process the visual information effectively. We made clear that the parallel processing with the even and odd nonlinear functions, is effective in the movement detection. The visual cortex for the movement detection, consists of two layered networks, called the primary visual cortex (V1), followed by the middle temporal area (MT). The fundamental characteristics in V! and MT model neurons, are discussed by analyzing the asymmetric neural networks. Then, the V1 and MT model networks, are decomposed into sub- asymmetrical networks. By the optimization of the asymmetric networks, the movement detection equations are derived. Then, it was clarified that the even-odd nonlinearity combined asymmetric networks in the V1 and MT, are fundamental in the movement detection. It was concluded that the V1 network, followed by the MT network, process the movement information sufficiently from the view point of the computational aspects.
在神经网络中,突出的特征之一是对空间信息的并行处理。理论上还没有很好地讨论阐明神经网络并行处理的关键特征。本研究表明,非对称非线性函数在运动检测的网络并行处理中发挥着至关重要的作用。视觉信息首先输入到视网膜神经网络,然后传输到中继神经元,最后在大脑皮层和中颞区的视觉网络中进行处理。据报道,在这些网络中,这种非线性函数将有效地处理视觉信息。我们清楚地表明,偶数和奇数非线性函数的并行处理在运动检测中是有效的。用于运动检测的视觉皮层由两层网络组成,称为初级视觉皮层(V1),其次是中颞区(MT)。 V! 的基本特征通过分析非对称神经网络来讨论 MT 模型神经元。然后,V1和MT模型网络被分解为次不对称网络。通过对非对称网络的优化,推导出运动检测方程。然后,阐明了 V1 和 MT 中的奇偶非线性组合不对称网络是运动检测的基础。结论是,从计算方面的角度来看,V1 网络以及随后的 MT 网络可以充分处理运动信息。

项目成果

期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Refractory Parameter of Chaotic Neurons in Incremental Learning
增量学习中混沌神经元不应参数的研究
Layered Networks Computations by Parallel Nonlinear Processing
通过并行非线性处理进行分层网络计算
Parallel Processing for Movement Detection in Neural Networks with Nonlinear Functions
具有非线性函数的神经网络中运动检测的并行处理
Combining classifiers in error correcting output coding
  • DOI:
    10.1002/scj.v35:4
  • 发表时间:
    2004-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Yamaguchi;Naohiro Ishii
  • 通讯作者:
    N. Yamaguchi;Naohiro Ishii
Integration Method of Combining Pattern Classifier (in Japanese)
组合模式分类器的集成方法(日语)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHII Naohiro其他文献

ISHII Naohiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHII Naohiro', 18)}}的其他基金

Computational Study on the Cognition and Memory Based on the Nonlinear Analysis for the Asymmetric Neural Networks
基于非对称神经网络非线性分析的认知与记忆计算研究
  • 批准号:
    15K00351
  • 财政年份:
    2015
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Studies on the Cognition and Memory Mechanisms of the Layered Neural Network with Asymmetric Structure
非对称结构分层神经网络认知记忆机制的计算研究
  • 批准号:
    21500225
  • 财政年份:
    2009
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on Recognition and Memory Mechanism of Asymmetric and Symmetric Layered Neural Networks
非对称与对称分层神经网络识别与记忆机制的计算研究
  • 批准号:
    19500197
  • 财政年份:
    2006
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Research on Cognition and Memory Mechanism in Neural Networks with Asymmetric and Symmetric Network Structures
非对称和对称网络结构神经网络认知记忆机制的计算研究
  • 批准号:
    17500154
  • 财政年份:
    2005
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on Recognition and Memory in the Asymmetric <symmetric Neural Networks
非对称<对称神经网络识别与记忆的计算研究
  • 批准号:
    12680379
  • 财政年份:
    2000
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on the Structure and Learning in the Integrated Neural Networks for Different Sensors
不同传感器的集成神经网络结构和学习的计算研究
  • 批准号:
    09680365
  • 财政年份:
    1997
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developmental Study on Measuring, Recording & Procession System of EEG during Working and Sleep
测量、记录的发展研究
  • 批准号:
    03555068
  • 财政年份:
    1991
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Study of Neural Information Processing by Spacial-Temporal Computation of Electroencephalogram, Electrooculogram and Electromyogram
脑电图、眼电图、肌电图时空计算的神经信息处理研究
  • 批准号:
    01550328
  • 财政年份:
    1989
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development Studies of Measuring and Processing Systgem of EEG Activity during Orking and Sleeping
睡眠时脑电活动测量与处理系统的开发研究
  • 批准号:
    61850055
  • 财政年份:
    1986
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research
Study of Information Processing in Neural Systems by Measuring EEG,EOG and EMG.
通过测量脑电图、眼电图和肌电图研究神经系统的信息处理。
  • 批准号:
    61550296
  • 财政年份:
    1986
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

非线性的可编程超表面衍射神经网络
  • 批准号:
    62301147
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小脑突触可塑性及非线性整合机制启发的脉冲神经网络学习方法研究
  • 批准号:
    62302016
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于纵向非线性数据构建亚临床动脉粥样硬化的神经网络预测模型研究
  • 批准号:
    82304244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机平均和神经网络的高维强非线性系统随机振动研究
  • 批准号:
    12302039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于归一化神经网络的非线性系统性能增强控制
  • 批准号:
    62273050
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
  • 批准号:
    10351738
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
  • 批准号:
    10584522
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
  • 批准号:
    2207449
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Relationship between Glaucoma and the Three-Dimensional Optic Nerve Head Related Structure
青光眼与三维视神经头相关结构的关系
  • 批准号:
    10332738
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
Relationship between Glaucoma and the Three-Dimensional Optic Nerve Head Related Structure
青光眼与三维视神经头相关结构的关系
  • 批准号:
    10594994
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了