Error correcting codes from the viewpoints of algebraic curves and finite geometry

从代数曲线和有限几何的角度看纠错码

基本信息

  • 批准号:
    15500017
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

We studied two-point codes on the Hermitian curve y^q+y=x^<q^+> over the field F of q^2 elements, where q^2 is a power of a prime number. As the two points of those codes, we may choose the point at infinity P and the origin Q with respect to the equation. We denote by C(m, n) the code arising from the linear system L(mP+nQ).Our problems were to compute dim C(m, n) and to find the minimum distance of C(m, n). First result is that it is enough to consider the two-point codes C(m, n) for the range 0【less than or equal】n【less than or equal】q. In the first year of this research project, we succeeded in determining the dimension of C(m, n) for all (m, n) in this range and finding the minimum distance for n=0 and q. In the second year, we happily succeeded in finding the minimum distance C(m, n) for all n with 0【less than or equal】n【less than or equal】q.Moreover, as a corollary of the third result, we found the example of two-point code with Ω-construction in our previous paper (with S.J Kim, Goppa codes with Weierstrass pairs, Pure Appl.Algebra 162(2001)) showed the sharpness of the estimation of the minimum distance of a two-point code that explained in the previous paper.
我们在遗传曲线上研究了两个点代码y^q+y = x^<q^+>在这些代码的两个点上,我们可以选择P和等式的原点Q。 (m,n)由线性系统(MP+NQ)产生的代码。您的问题是计算DIM C(M,N),并找到C的最小距离(M,N)。足以满足范围0 [小于或相等] n [小于或相等]的c(m,n)q。在n = 0和q的最小距离中。在第二年,我们高兴地,所有n的最小距离C(m,n),为0(小于或相等),作为第三结果的推论,是在我们的代数162(2001)中,具有ω构成的两点代码显示了上一篇论文中解释的两点代码最小距离的估计的清晰度。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
本間正明: "Conics with a Hermitian curve"Symposium on Algebraic Geometry at Niigata,2004報告集. To appear.
本间正明:《带有埃尔米特曲线的圆锥曲线》新泻代数几何研讨会报告集,出版。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hermitian曲線上の$2$点符号(予報)
埃尔米特曲线上的 $2$ 点符号(预测)
The Two-Point Codes on a Hermitian Curve with the Designed Minimum Distance
  • DOI:
    10.1007/s10623-004-5661-x
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Homma;S. Kim
  • 通讯作者:
    M. Homma;S. Kim
本間正明: "Hermitian曲線上の2点符号(予報)"数理研講究録(符号と暗号の代数的数理). To appear.
本间正明:《埃尔米特曲线上的两点码(预测)》数学研究讲座记录(代码与密码学的代数数学)出现。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toward the Determination of the Minimum Distance of Two-Point Codes on a Hermitian Curve
  • DOI:
    10.1007/s10623-004-3807-5
  • 发表时间:
    2005-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Homma;S. Kim
  • 通讯作者:
    M. Homma;S. Kim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOMMA Masaaki其他文献

HOMMA Masaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOMMA Masaaki', 18)}}的其他基金

A study of algebraic curves from viewpoints of the coding theory and the finite geometry
从编码理论和有限几何的角度研究代数曲线
  • 批准号:
    21540051
  • 财政年份:
    2009
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial algebraic geometry over a finite field and its application
有限域上的组合代数几何及其应用
  • 批准号:
    19540058
  • 财政年份:
    2007
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of algebraic curves motivated by coding theory
受编码理论启发的代数曲线理论
  • 批准号:
    17540045
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of algebraic curves with application toward the coding theory
代数曲线理论及其在编码理论中的应用
  • 批准号:
    13640048
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of function fields with particular properties, and its application to coding theory
具有特定性质的函数域的研究及其在编码理论中的应用
  • 批准号:
    10640048
  • 财政年份:
    1998
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A STUDY OF PHILANTHROPY
慈善事业研究
  • 批准号:
    06301074
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了