Large-scale Multiscale Analysis for Microscopic Buckling and Macroscopic Instability of Periodic Cellular Solids Based on a Homogenization Theory

基于均质化理论的周期性多孔固体微观屈曲和宏观不稳定性的大规模多尺度分析

基本信息

  • 批准号:
    15360051
  • 负责人:
  • 金额:
    $ 6.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In this study, first, a general framework was developed to analyze microscopic bifurcation and post-bifurcation behavior of periodic cellular solids. The framework was built on the basis of a two-scale theory, called a homogenization theory, of the updated Lagrangian type. The eigenmode problem of microscopic bifurcation and the orthogonality to be satisfied by the eigenmodes were thus derived. It was shown that the orthogonality allows the macroscopic increments to be independent of the eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation analysis based on the notion of comparison solids.Second, by use of the framework mentioned above, bifurcation and post-bifurcation analysis were performed for cell aggregates of an elastoplastic hexagonal honeycomb subject to in-plane compression. Thus, demonstrating a basic, long-wave eigenmode of microscopic bifurcation under uniaxial compression, it was shown that the eigenmode has the longitudinal component dominant … More to the transverse component and consequently causes microscopic buckling to localize in a cell row perpendicular to the loading axis. It was further shown that under equi-biaxial compression, the flower-like buckling mode having occurred in a macroscopically stable state changes into an asymmetric, long-wave mode due to the sextuple bifurcation in a macroscopically unstable state, leading to the localization of microscopic buckling in deltaic areas.Third, long-wave and short-wave buckling of elastic square honeycombs subject to in-plane biaxial compression were analyzed using the two-scale theory. By taking cell aggregates to be periodic units, the bifurcation and post-bifurcation behavior were analyzed to discuss the dependence of buckling stress on periodic length. It was shown that buckling stress decreases as periodic length increases, and that very-long-wave buckling occurs just after the onset of macroscopic instability if the periodic length is sufficiently long. Then, a simple formula to evaluate the very-long-wave buckling stress under in-plane biaxial compression was derived by exploring the macroscopic instability condition in the light of the two-scale analysis. The resulting formula was verified using an energy method. Less
在这项研究中,首先,开发了一个一般框架来分析分叉和生物后行为的牢房,该框架是基于更新的Lagangian类型的两个规模理论(称为同质化理论)建立的。分叉和对本征模的正交性被施加了,这使得某些性质允许本征素模的宏观递增,从而基于比较固体概念的弹性塑性分析的简单过程。 By the Framework Mentalk Mented Above, Bifurcation And Post-Bifurcation Analysis Were PERFORMED FORLL AGGRR Egates of An Elastoplastic Hexagonal Honeycomb Subject to In-Plane Compression. Thus, Demonstrating a Basic, Long-Wave Eigenmode of Microscopic Bifurcation Under UNIAXIAL COMPRESSION ONENT AND CAUSES MICROSCOPIC屈曲至垂直于载荷轴的细胞行,在宏观上屈曲的花状屈曲变为不对称的,长波模式的torcation torcat torcat torcat ion三角洲区域。使用理论理论分析了弹性方形蜂窝的三分,长波和短波屈曲,以期为周期性。周期性的压力显示,屈曲条纹应力设计为驴,如果周期性的长度足够长,则很长的巨型波脉络。应力应力,使用能量方法验证了所得公式

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-wave in-plane buckling of elastic square honeycombs
弹性方形蜂窝体的长波面内屈曲
Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids
D.Okumura: "Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids"Journal of the Mechanics and Physics of Solids. 53・3. 641-666 (2004)
D. Okumura:“周期性细胞固体的弹塑性微观分叉和分叉后行为”《固体力学与物理学杂志》53・3(2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Microscopic bifurcation and macroscopic localization in periodic cellular solids : elastoplastic analysis based on a homogenization theory
周期性细胞固体中的微观分岔和宏观局域化:基于均质化理论的弹塑性分析
奥村 大: "均質化理論による周期セル状固体の微視的分岐と巨視的不安定の弾塑性解析"日本機械学会論文集(A編). 69・686. 1421-1428 (2003)
Dai Okumura:“基于均质化理论的周期性细胞固体的微观分岔和宏观不稳定性的弹塑性分析”日本机械工程学会会刊(A版)1421-1428(2003年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Nobutada其他文献

OHNO Nobutada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Nobutada', 18)}}的其他基金

Homogenized inelastic constitutive equation of open-porous bodies: theoretical developments and applications
开孔体均匀非弹性本构方程:理论发展与应用
  • 批准号:
    24360045
  • 财政年份:
    2012
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytical prediction and homogenization analysis of grain fining effects using a strain gradient plasticity theory
使用应变梯度塑性理论对晶粒细化效果进行分析预测和均匀化分析
  • 批准号:
    19360048
  • 财政年份:
    2007
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microscopic Buckling Analysis of Cellular Solids Based on a Homogenization Theory of Finite Deformation
基于有限变形均匀化理论的多孔固体微观屈曲分析
  • 批准号:
    13650084
  • 财政年份:
    2001
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Laser-Raman Measurement and Analytical Evaluation of Matrix Creep Induced Stress Relaxation in Broken Fibers
断裂纤维中基体蠕变引起的应力松弛的激光拉曼测量和分析评估
  • 批准号:
    11650086
  • 财政年份:
    1999
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homogenization Analysis and Experimental Verification for Creep of Unidirectional Fiber Reinforced Composites
单向纤维增强复合材料蠕变均匀化分析及实验验证
  • 批准号:
    09450046
  • 财政年份:
    1997
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

香蒲基多孔固体酸的构筑及其催化制备乙酰丙酸的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
固体表面能量分布不均匀性对于CDFT表征多孔材料孔径分布的影响机制
  • 批准号:
    22108092
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于磷钨酸的多孔疏水性固体酸催化剂高效催化合成过氧丙酸
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锂硫电池正极碳纳米孔中固体硫演变过程调控及其对电池性能影响研究
  • 批准号:
    21905035
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于NH3燃料的高效中温质子导体固体氧化物燃料电池多孔阳极的设计制备及反应机理
  • 批准号:
    21908028
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

導電性ナノ多孔質ポリ硫化炭素による低環境負荷型全固体電池のための分子性硫黄正極
使用导电纳米多孔多硫化碳的低环境影响全固态电池的分子硫阴极
  • 批准号:
    24K08085
  • 财政年份:
    2024
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多孔性金属錯体を利用した高分子末端の厳密認識・分離・選択的反応法の開発
使用多孔金属配合物开发聚合物末端的严格识别、分离和选择性反应方法
  • 批准号:
    22KJ0643
  • 财政年份:
    2023
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Develop Conditionally Armored CAR Macrophage Therapy for Pancreatic Cancer
开发针对胰腺癌的条件装甲 CAR 巨噬细胞疗法
  • 批准号:
    10710883
  • 财政年份:
    2023
  • 资助金额:
    $ 6.46万
  • 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 6.46万
  • 项目类别:
Development of Coccidioides Cytokine Release Assay
球孢子菌细胞因子释放测定的发展
  • 批准号:
    10760131
  • 财政年份:
    2023
  • 资助金额:
    $ 6.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了