Study on phase transition for interacting particle systems

相互作用粒子系统的相变研究

基本信息

  • 批准号:
    12440024
  • 负责人:
  • 金额:
    $ 9.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

We study phase transitions of interacting particle systems, in particular, contact process type model, the Domany-Kinzel model by using various correlation inequalities and correlation identities. Recently we obtain the BFKL inequality which is a refinement of a special case of the well-known Harris-FKG inequality. From this inequality, bounds of the survival probability and critical value can be obtained systematically. In general, we can apply the above mentioned method (called correlation inequality method (CIM) to attractive interacting particle systems. However it was not known whether or not the CIM can be applied to even non-attractive models. Some Monte Carlo simulations suggested that some non-attractive models satisfy the Harris-FKG type inequality. In fact, we could prove this fact later. But we do not show that the BFKL inequality can be satisfied for the same model. Furthermore we obtain a necessary and sufficient condition on duality for the Domany-Kinzel model by several methods. One of them is closely related to quantum mechanics. So we move to study quantum walks which have been widely studied in the field of quantum computing. In particular, we study symmetry of distribution, limit theorems, and absorption problems of quantum walks with nearest-neighbor transition in one dimension. Very recently we show a localization of two-dimensional quantum walk including the Grover walk.
我们通过使用各种相关不等式和相关恒等式来研究相互作用粒子系统的相变,特别是接触过程类型模型、Domany-Kinzel 模型。最近我们得到了 BFKL 不等式,它是著名的 Harris-FKG 不等式的特例的改进。从这个不等式中,可以系统地获得生存概率和临界值的界限。一般来说,我们可以将上述方法(称为相关不等式方法(CIM))应用于有吸引力的相互作用粒子系统。然而,尚不清楚 CIM 是否可以应用于甚至非有吸引力的模型。一些蒙特卡洛模拟表明:一些非吸引力模型满足 Harris-FKG 型不等式,但我们并没有证明同一模型可以满足 BFKL 不等式。此外,我们还得到了对偶性的充分必要条件。为Domany-Kinzel 模型有多种方法,其中之一与量子力学密切相关,因此我们开始研究量子计算领域中广泛研究的量子游走,特别是我们研究分布的对称性、极限定理和量子游走。一维中最近邻跃迁的量子行走的吸收问题 最近我们展示了包括 Grover 行走在内的二维量子行走的局域化。

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Konno, R.Schinazi, H.Tanemura: "Coexistence results for a spatial stochastic epidemic model"Markov Processes and Related Fields. (2004)
N.Konno、R.Schinazi、H.Tanemura:“空间随机流行病模型的共存结果”马尔可夫过程和相关领域。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Makoto Katori: "Survival probabilities for discrete-time models in one dimension"Journal of Statistical Physics. 99. 603-612 (2000)
Makoto Katori:“一维离散时间模型的生存概率”统计物理学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazunori Sato: "Parity law for population dynamics of N-species wity cyclic advantage competitions"Applied Mathematics and Computation. Vol.126 Nos.2-3. 255-270 (2002)
Kazunori Sato:“具有循环优势竞争的 N 物种种群动态的奇偶律”应用数学和计算。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Konno: "Absorption problems for quantum walks in one dimension"J.Phys.A : Math.Gen. 36. 241-253 (2003)
N.Konno:“一维量子行走的吸收问题”J.Phys.A :Math.Gen。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Konno, T.Namiki, T.Soshi, A.Sudburg: "Absorption problems for quantum random walks in one dimertion"Journal of Physics A : Mathematical and General. 36巻. 241-253 (2003)
N.Konno、T.Namiki、T.Soshi、A.Sudburg:“一维量子随机游走的吸收问题”《物理学杂志 A》:数学与综合。 36. 241-253 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KONNO Norio其他文献

KONNO Norio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KONNO Norio', 18)}}的其他基金

Towards the construction of a unified theory of stochastic and quantum models on complex networks
构建复杂网络上随机和量子模型的统一理论
  • 批准号:
    15K13443
  • 财政年份:
    2015
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on classical and quantum models on graphs
图上的经典模型和量子模型研究
  • 批准号:
    24540116
  • 财政年份:
    2012
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on stochastic and quantum models on complex networks
复杂网络的随机和量子模型研究
  • 批准号:
    21540118
  • 财政年份:
    2009
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on transit layers of the Boltzmann equation
玻尔兹曼方程传输层的研究
  • 批准号:
    16540185
  • 财政年份:
    2004
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on Interacting Particle Systems Based on a New Type of Correlation Inequalities
基于新型相关不等式的相互作用粒子系统分析
  • 批准号:
    09640250
  • 财政年份:
    1997
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
  • 批准号:
    10841820
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
Identifying Community-Informed DoxyPEP Implementation Strategies to Guide Equitable Delivery of Syphilis Prevention
确定社区知情的 DoxyPEP 实施策略,以指导公平地提供梅毒预防
  • 批准号:
    10727777
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
Detecting cell to cell contacts in zebrafish with a synthetic receptor methodology
使用合成受体方法检测斑马鱼的细胞与细胞接触
  • 批准号:
    10645331
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
The role of excitatory VTA projections in novelty-dependent behavior
兴奋性 VTA 投射在新奇依赖行为中的作用
  • 批准号:
    10720976
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
Expanding Swabseq sequencing technology to enable readiness for emerging pathogens
扩展 Swabseq 测序技术,为新出现的病原体做好准备
  • 批准号:
    10719421
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了