FOR 5363: KI-FOR Fusing Deep Learning and Statistics towards Understanding Structured Biomedical Data
FOR 5363:AI-FOR 融合深度学习和统计学以理解结构化生物医学数据
基本信息
- 批准号:459422098
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-throughput measurements in the biomedical sciences such as stacks of images, genome sequences or time-series constitute structured data that are characterized by their inherent dependencies between measurements, often non-vectorial nature and the presence of confounding influences and sampling biases. For example, population structure, systematic measurement artifacts, non-independent sampling or different group age distributions can lead to spurious results if not accounted for. Deep learning excels in many applications on structured data due to the ability to capture complex dependencies within and between inputs and outputs, allowing for accurate prediction. Despite recent advances in explainable artificial intelligence and Bayesian neural networks, deep learning still has limitations with respect to its assessment of uncertainty, interpretability, and validation. These, however, are important components in order to go beyond prediction towards understanding the underlying biology. To this end, statistics has traditionally been used in the biomedical sciences due to interpretable model output and statistical inference, which i.a. provides quantification of uncertainty, corrections for confounding and testing of hypotheses with statistical error control. Methods from classical statistics, however, have limitations in their modelling flexibility for structured data and their ability to capture complex non-linearities in a data-driven way.In this research unit we bring together experts from machine learning and statistics with a track record in biomedical applications to address the following overarching objectives:(O1) to integrate deep learning and statistics to improve interpretability, uncertainty quantification and statistical inference for deep learning, and to improve modeling flexibility of statistical methods for structured data. In particular, we will develop methods that provide statistical inference for structured data by quantification of uncertainty, testing of hypotheses and conditioning on confounders, and that improve explanations of structured data through hybrid statistical and deep learning models, population- and distribution-level explanations, and robust sparse explanations.(O2) to create a feedback loop between this methods development and biomedical applications, where we account for the needs in the analysis of the data when developing new methods and generate biomedical insights from applications of the developed methods to the data. Applications include analysis of MRI, fMRI and microscopy images, longitudinal disease progression modeling, DNA sequence analysis, and genetic association studies.
生物医学科学中的高通量测量(例如图像堆栈、基因组序列或时间序列)构成结构化数据,其特征在于测量之间的固有依赖性,通常是非矢量性质以及混杂影响和采样偏差的存在。例如,如果不考虑人口结构、系统测量伪影、非独立抽样或不同的群体年龄分布,可能会导致虚假结果。深度学习在结构化数据的许多应用中表现出色,因为它能够捕获输入和输出内部以及之间的复杂依赖关系,从而实现准确的预测。尽管可解释的人工智能和贝叶斯神经网络最近取得了进展,但深度学习在评估不确定性、可解释性和验证方面仍然存在局限性。然而,这些都是重要的组成部分,以便超越预测来理解潜在的生物学。为此,由于可解释的模型输出和统计推断,统计学传统上被用于生物医学科学,即通过统计误差控制提供不确定性的量化、混杂校正和假设检验。然而,经典统计学方法在结构化数据的建模灵活性以及以数据驱动的方式捕获复杂非线性的能力方面存在局限性。在这个研究单元中,我们汇集了来自机器学习和统计学的专家,他们在生物医学应用,以实现以下总体目标:(O1)整合深度学习和统计学,以提高深度学习的可解释性、不确定性量化和统计推断,并提高结构化数据统计方法的建模灵活性。特别是,我们将开发通过量化不确定性、测试假设和调节混杂因素来为结构化数据提供统计推断的方法,并通过混合统计和深度学习模型、群体和分布级别的解释来改进结构化数据的解释,和强大的稀疏解释。(O2)在该方法开发和生物医学应用之间创建反馈循环,我们在开发新方法时考虑数据分析的需求,并从开发的方法对数据的应用中产生生物医学见解。应用包括 MRI、fMRI 和显微镜图像分析、纵向疾病进展建模、DNA 序列分析和遗传关联研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Products Review
- DOI:
10.1177/216507996201000701 - 发表时间:
1962-07 - 期刊:
- 影响因子:2.6
- 作者:
- 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
- DOI:
10.1016/j.techsoc.2023.102253 - 发表时间:
2023-04 - 期刊:
- 影响因子:9.2
- 作者:
- 通讯作者:
Digitization
- DOI:
10.1017/9781316987506.024 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
References
- DOI:
10.1002/9781119681069.refs - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Putrescine Dihydrochloride
- DOI:
10.15227/orgsyn.036.0069 - 发表时间:
1956-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
USP4通过稳定CDH1降解Ki-67蛋白抑制肺腺癌细胞增殖
- 批准号:82002922
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于hACE2-KI小鼠模型的新型冠状病毒致病机理以及抗体交叉保护研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
IGF2BP3通过m6A途径靶向作用Ki67促进三阴性乳腺癌增殖的机制研究
- 批准号:81972486
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
遗传性耳聋新的致病基因ABCC1的鉴定及致病机制研究
- 批准号:81873705
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
NL3 R451C KI自闭症模型小鼠社交障碍的分子和细胞机制及其治疗干预
- 批准号:81801355
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Heat Shock Protein 70 as a Mediator and Therapeutic Target in T-cell Lymphomas
热休克蛋白 70 作为 T 细胞淋巴瘤介质和治疗靶点的作用
- 批准号:
10669221 - 财政年份:2022
- 资助金额:
-- - 项目类别:
COMParative ASSessment of p16/Ki-67 DUal Staining Technology in women living with HIV (COMPASS-DUST study)
p16/Ki-67 双重染色技术对 HIV 感染女性的比较评估(COMPASS-DUST 研究)
- 批准号:
10534893 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Search for a new treatment for colorectal cancer by inhibiting the immunoglobulin transmembrane glycoprotein Nectin-4
通过抑制免疫球蛋白跨膜糖蛋白Nectin-4寻找结直肠癌新疗法
- 批准号:
22K08899 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of germline mutations on the development of breast-implant associated anaplastic large cell lymphoma (BIA-ALCL) in women with textured breast implants
种系突变对有纹理乳房植入物的女性发生乳房植入物相关间变性大细胞淋巴瘤 (BIA-ALCL) 的影响
- 批准号:
10685505 - 财政年份:2022
- 资助金额:
-- - 项目类别:
COMParative ASSessment of p16/Ki-67 DUal Staining Technology in women living with HIV (COMPASS-DUST study)
p16/Ki-67 双重染色技术对 HIV 感染女性的比较评估(COMPASS-DUST 研究)
- 批准号:
10669781 - 财政年份:2022
- 资助金额:
-- - 项目类别: