A Study of asymptotic behaviors of stochastic oscillatory integrals
随机振荡积分渐近行为的研究
基本信息
- 批准号:11440051
- 负责人:
- 金额:$ 5.63万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we have made a systematic study on the asymptotic behavior of stochastic oscillatoty integrals. A stochastic oscillatory integral I(a) is, by definition, a integral of exp[iaq(x)]f(x) over the Wiener space X with respect to the Wiener measure on it, where i is the square root of -1, a is a real number, q, f are Wiener functionals on X. Obviously I(a) gives a characteristic function of the distribution of q under f(x)m(dx), and hence it is a basic object in the probability theory. Recalling the theory of Feynman path integrals, one recognizes the real interest of stochastic oscillatory integrals. Namely, a stochastic oscillatory integral is a mathematical counterpart to Feynman path integral, and the study of its asymptotic behavior closely relates to, so called, the WKB approximation, the semi-classical approximation, and so on. In our study, following the well developed theory of statinary phase method on finite dimensional spaces, we made several basic but indispensable researches on the asymptotic behavior of stochastic oscillatory integrals. We established several explicit representation of stochastic oscillatory integrals with quadratic phase functions, and apply them to show a principle of stationary phase for such oscillatory integrals. Moreover, we spelled out the relationship between the decay order of integrals and the quadratic phase functions. We also showed that a localization to stationary points of the main part of the asymptototic behavior occurs for some stochastic oscillatory integrals. We moreover made several concrete observations when the oscillatory integral is defined on the classical Wiener space, the path space.
在这项研究中,我们对随机振荡积分的渐近行为进行了系统的研究。从定义上讲,随机振荡的积分I(a)是exp [iaq(x)] f(x)在维纳尔空间x上相对于维也纳措施的积分,其中i是-1的平方根,a是一个实数,q,f是X上的wiener函数。显然,i(a)给出了f(x)m(dx)下q分布的特征函数,因此它是概率中的基本对象理论。回忆起Feynman Path积分的理论,人们认识到随机振荡积分的真正兴趣。也就是说,随机振荡的积分是Feynman Path积分的数学对应物,其渐近行为的研究与所谓的WKB近似,半古典近似等等密切相关。在我们的研究中,遵循有限维空间的统计学方法的良好发展理论,我们就随机振荡性积分的渐近行为进行了几项基本但不可或缺的研究。我们建立了具有二次相函数的随机振荡积分的几个明确表示,并将它们应用它们显示了此类振荡积分的固定相原理。此外,我们阐明了积分的衰减顺序与二次相函数之间的关系。我们还表明,对于某些随机振荡性积分,发生了渐近行为主要部分的固定点的定位。此外,当在经典的维纳空间(路径空间)上定义振荡性积分时,我们进行了几个具体的观察。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Taniguchi: "Levy's stochastic area md the principle of stationamy phase"Jour.Funct.Anal.. (印刷中). (2000)
S.Taniguchi:“Levy 的随机区域和平稳相原理”Jour.Funct.Anal..(印刷中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Tanigushi: "Stochastic oscillatory integrals with quadratic phase function and Jacobi equations"Probab.Theor.and Rel.Fields. 114・3. 291-308 (1999)
S.Tanigushi:“具有二次相位函数和雅可比方程的随机振荡积分”Probab.Theor.and Rel.Fields 114・3(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Setsuo Taniguchi : "Levy's stochastic area and the principle of stationary phase"Journal of functional Analysis. 172. 165-176 (2000)
Setsuo Taniguchi:“Levy 随机面积和固定相原理”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Sugita, S.Taniguchi: "A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure"Kyushu J. Math.. 53. 151-162 (1999)
H.Sugita、S.Taniguchi:“关于固定维纳测度的随机振荡积分的评论”Kyushu J. Math.. 53. 151-162 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kumi Yasuda: "Extension of Measures to Infinite Dimensional Spaces over p-adic Field"Osaka Journal of Mathematics. 37. 967-985 (2000)
安田来未:“扩展对 p-adic 场上无限维空间的测量”大阪数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANIGUCHI Setsuo其他文献
Heat trace asymptotics on equiregular sub-Riemannian manifolds
等正则亚黎曼流形上的热迹渐近
- DOI:
10.2969/jmsj/82348234 - 发表时间:
2020 - 期刊:
- 影响因子:0.7
- 作者:
INAHAMA Yuzuru;TANIGUCHI Setsuo - 通讯作者:
TANIGUCHI Setsuo
Vocabulary Comparison in Works of American Prose: An Interdisciplinary Analysis Using Word2vec
美国散文作品中的词汇比较:使用 Word2vec 进行跨学科分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
UCHIDA Satoru;SHIMOJO Keiko;WATANABE Tomoaki;SAITO Shingo;TANIGUCHI Setsuo - 通讯作者:
TANIGUCHI Setsuo
TANIGUCHI Setsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANIGUCHI Setsuo', 18)}}的其他基金
A new development of stochastic differential geometry associated with degenerate differential operators
与简并微分算子相关的随机微分几何的新发展
- 批准号:
24540178 - 财政年份:2012
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of stochastic calculus to the KdV equation and hierarchy
随机微积分在 KdV 方程和层次结构中的应用
- 批准号:
18340038 - 财政年份:2006
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study of stochastic analysis - synthesizing and integrating
随机分析研究——综合与整合
- 批准号:
14204010 - 财政年份:2002
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on behaviors of solutions to hydrodynamical equations
流体动力学方程解的行为研究
- 批准号:
08454031 - 财政年份:1996
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Conference: International conference on Malliavin calculus and related topics
会议:Malliavin 微积分及相关主题国际会议
- 批准号:
2308890 - 财政年份:2023
- 资助金额:
$ 5.63万 - 项目类别:
Standard Grant
Optimal hedging strategies and its numerical methods under the incomplete markets
不完全市场下的最优对冲策略及其数值方法
- 批准号:
17K13764 - 财政年份:2017
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Numerical analysis for SDE and non-colliding stochastic processes
SDE 和非碰撞随机过程的数值分析
- 批准号:
17H06833 - 财政年份:2017
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
New higher order discretization method with Malliavin calculus
采用 Malliavin 微积分的新高阶离散化方法
- 批准号:
16K13773 - 财政年份:2016
- 资助金额:
$ 5.63万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Topics in stochastic analysis and Malliavin calculus
随机分析和 Malliavin 微积分主题
- 批准号:
1734183 - 财政年份:2016
- 资助金额:
$ 5.63万 - 项目类别:
Standard Grant