Symplectic structures and singularities
辛结构和奇点
基本信息
- 批准号:11440015
- 负责人:
- 金额:$ 7.68万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is not always the case that Floer homology for pairs of Lagrangian sumanifolds can be defined. We constructed the obstruction theory for defining Floer homology for pairs of Lagrangian submanifolds in order to clarify when it is defined. When all the obstruction classes vanish, Floer homology can be defined. However, it depends on a choice of so-called bounding chains. Dependence of Floer homology over bounding chains can be understood in the framework of filtered A_∞-algebra associated to Lagrangian submanifolds. This algebra controls the deformation (extended moduli) of unobstructed Lagrangian submanifolds and is important in itself. These results are presented in a preprint by Fukaya, Oh, Ohta and Ono.Ono and Ohta classified diffeomorphism types of minimal symplectic fillings of links of simple singularities and simple elliptic singularities (complex dimension 2). For an isolated singularity, the minimal resolution and the Milnor fibe, if it exists, give typical example of minimal symplectic fillings. But they a not diffeomorphic in general. In the case of simple singularity, they turn out diffeomorphic thanks to existence of the simultaneous resolution by Brieskorn. We studied this phenomenon from contact/symplectic viewpoint. Kanda also contributed in a course of this research.
并非总是可以定义拉格朗日苏流形对的弗洛尔同调性。我们构建了定义拉格朗日子流形对的弗洛尔同调性的阻碍理论,以澄清当所有阻碍类别消失时,弗洛尔同调性。然而,它取决于所谓的边界链的选择。弗洛尔同源性对边界链的依赖性可以在过滤的框架中理解。与拉格朗日子流形相关的 A_∞ 代数该代数控制无阻碍拉格朗日子流形的变形(扩展模量),其本身很重要。这些结果在 Fukaya、Oh、Ohta 和 Ono 的预印本中提出。Ono 和 Ohta 分类了微分同胚类型。简单奇点和简单椭圆奇点链接的最小辛填充(复维2) 对于孤立奇点,最小分辨率和 Milnor 纤维(如果存在)给出了最小辛填充的典型例子,但它们通常不是微分同胚的。我们从接触/辛的角度研究了这种现象,Kanda 也在这项研究过程中做出了贡献。
项目成果
期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kenji Fukaya: "Floer homology over integer of general simplistic manifolds, -summary-"Advanced Studies in Pure Mathematics. 31. 75-91 (2001)
Kenji Fukaya:“一般简单流形整数上的弗洛尔同调,-摘要-”纯数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yutaka Kanda: "The monopole eqation and J-holomorphic curves on weakly convex almost Kahler 4-manifolds"Transactions of American Mathematical Society. Vol. 353. 2215-2243 (2001)
Yutaka Kanda:“弱凸几乎 Kahler 4-流形上的单极方程和 J-全纯曲线”美国数学会汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Go-o Ishikawa: "Topological classification of the tangent developable pf space cirves"Journal of London mathematical Society. Vol. 62. 583-598 (2000)
Go-o Ishikawa:“切线可展空间环路的拓扑分类”伦敦数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Ono: "Simple singularities and topology of symplectically filling 4-manifolds"Commentarii Mathematici Helvetici. 74. 575-590 (1999)
T. Ono:“辛填充 4 流形的简单奇点和拓扑”Commentarii Mathematici Helvetici。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenji Fukaya: "Floer homology over integer of general symplectic manifolds -summary-"Advanced Studies in Pure Mathematics. (印刷中).
Kenji Fukaya:“一般辛流形整数上的弗洛尔同调 - 摘要 -”纯数学高级研究(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONO Kaoru其他文献
EVALUATION ANALYSIS OF DAILY USE VALUE OF EVACUATION FACILITIES BASED ON COMPARISON BETWEEN DISASTER-PREVENTION PARK AND EVACUATION HILL
基于防灾公园与疏散山对比的疏散设施日常使用价值评价分析
- DOI:
10.2208/kaigan.76.2_i_1273 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
ASAHINA Tomomi;YASUDA Tomohiro;KONO Tatsuhito;ONO Kaoru;YAMANAKA Ryoichi - 通讯作者:
YAMANAKA Ryoichi
ONO Kaoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONO Kaoru', 18)}}的其他基金
Development of Floer theory and study on symplectic structures
Florer理论的发展和辛结构的研究
- 批准号:
26247006 - 财政年份:2014
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on Floer thoery, theory of holomorphic curves and symplectic structures, contact structures
弗洛尔理论、全纯曲线理论和辛结构、接触结构研究
- 批准号:
21244002 - 财政年份:2009
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Floor homology, singularities and deformation theory
地板同源性、奇点和变形理论
- 批准号:
14340019 - 财政年份:2002
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on symplectic structures and contact structures
辛结构和接触结构的研究
- 批准号:
09640095 - 财政年份:1997
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
超曲面的曲率流及拉格朗日子流形的研究
- 批准号:11971244
- 批准年份:2019
- 资助金额:53 万元
- 项目类别:面上项目
完备仿射超曲面的Bernstein问题及其在平均曲率流中的应用
- 批准号:11871197
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
黎曼流形与黎曼子流形的刚性及分类问题研究
- 批准号:11771404
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
曲率方程以及与拉格朗日子流形相关的一些几何问题研究
- 批准号:11771232
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
辛不变量与代数结构
- 批准号:11671209
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
A study on a generating function of a complex Lagrangian submanifold and its applications
复拉格朗日子流形生成函数的研究及其应用
- 批准号:
22540103 - 财政年份:2010
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the differential geometric Schottky problem
关于微分几何肖特基问题
- 批准号:
16540060 - 财政年份:2004
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Floer cohomology, mirror symmetry conjecture and singularity
Florer上同调、镜面对称猜想与奇异性研究
- 批准号:
15340020 - 财政年份:2003
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Floer homology, string theory and contact geometry
弗洛尔同调、弦理论和接触几何
- 批准号:
12640066 - 财政年份:2000
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli space and infinite dimensional geometry
模空间和无限维几何
- 批准号:
09304008 - 财政年份:1997
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A).