Risk-sensitive stochastic control and its singular limit

风险敏感随机控制及其奇异极限

基本信息

  • 批准号:
    10440030
  • 负责人:
  • 金额:
    $ 3.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

(a) It is important to know the conditions for no breakdown in risk-sensitive stochastic control problems since the value function has not always a finite value. In this research we have obtained the condition as that of the size of risk-sensitive parameter in the case of a finite time horizon and also shown the solvability of the corresponding Bellman equation under the condition. It is applicable for the case that the risk-sensitive parameter is large and has great meaning in application. In the case of infinite time horizon we have shown existence and uniqueness of the corresponding ergodic type Bellman equation under a similar condition by noticing the relationships between the problems and the eigenvalue problems for Schrodinger operator. Besides, we have derived a first order partial differential equation relating to game theoretical approach to nonlinear H_∞ control as its singular limit.(b) We have considered portfolio optimization problem for a factor model as application to m … More athematical finance of risk-sensitive stochastic control and got the results giving the explicit representation to optimal portfolio for the problem in the case of partial information. In the case of infinite time horizon we obtained the condition under which the solution of corresponding ergodic type Bellman equation defines the optimal portfolio and constructed it by the solution. We have also found that the solution does not always give the optimal portfolio without any condition.(c) We have shown existence of the spectral gap of Schrodinger opeartor by using log Sobolev inequality and gave the estimate.(d) We have shown that the large deviation principle holds for additive functional of Brownian motion corresponding to measures in Kato class. As its application we obtained necessary and sufficient condition under which additive functionals converges exponentially fast.(e) We have shown Trotter product formula with respect to L_p and trace norm and their error estimates for the Schrodinger operator with a potential bounded below.(f) We have shown that the sequence of symmetric statistics defined by Weyl transformation on infinite dimensional torus converges to the limit represented by multiple Wiener integral under the probability measures. Less
(a)重要的是要了解风险敏感的随机控制问题的崩溃,因为该功能在这项研究中并不总是一个价值。同样,在这种情况下,相应的Bellman方程很大,在无限时间的情况下,我们已经显示Schrodinger的问题及其特征值的问题时间的情况,我们获得了Solresponding Ergodicn bellman定义最佳投资组合并通过解决方案构造的链接。频谱差距使用lobolev inequlity并给出了timate(d)。指数迅速。较少的。

项目成果

期刊论文数量(122)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Aida: "An estimate of the gap of spectrum of Schrodinger operators which generate hyperbourded semigroups"J.Funct.Anal.. (to appear).
S.Aida:“生成超布尔半群的薛定谔算子谱间隙的估计”J.Funct.Anal..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A,Bensoussan,J.Frehse and H.Nagai: "Some Results on Risk-sensitive Contint with Full Obserration" Applied Mathematics and its Optimization. 37. 1-41 (1998)
A,Bensoussan,J.Frehse 和 H.Nagai:“风险敏感连续性充分观察的一些结果”应用数学及其优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Shirakawa: "Evaluation of yield spread for credit risk"Advances in Mathematical Economics. 1. 83-97 (1999)
H.Shirakawa:“信用风险收益率利差的评估”数理经济学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Sekine: "Information Geometry for Symmetric Diffusions"Potential Analysis. 1-30 (2001)
J.Sekine:“对称扩散的信息几何”潜力分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Takeda: "Topics on Dirichlet forms and symmetric Markov processes"Sugaku Expositions. 12. 201-222 (1999)
M.Takeda:“关于狄利克雷形式和对称马尔可夫过程的主题”Sugaku Expositions。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAI Hideo其他文献

NAGAI Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAI Hideo', 18)}}的其他基金

Stochastic control on a long term and its applications
长期随机控制及其应用
  • 批准号:
    25400150
  • 财政年份:
    2013
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the methods of stochastic control and filtering in mathematical finance
数学金融中随机控制和过滤方法的发展
  • 批准号:
    20340019
  • 财政年份:
    2008
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
BELLMAN EQUATIONS OF RISK-SENRSITIVE STOCHASTIC AND THEIR APPLICATIONS
风险敏感随机贝尔曼方程及其应用
  • 批准号:
    13440033
  • 财政年份:
    2001
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Histochemical and genetic study of cystic tumors of the pancreas
胰腺囊性肿瘤的组织化学和遗传学研究
  • 批准号:
    12671254
  • 财政年份:
    2000
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The molecular and clinicopathological study related to detection of K-ras point mutation in the blood of pancreatic cancer cases
胰腺癌患者血液中K-ras点突变检测相关的分子及临床病理学研究
  • 批准号:
    08671480
  • 财政年份:
    1996
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nuclear DNA analysis of genetics of cancer and dysplasia complicating ulcerative colitis
癌症和溃疡性结肠炎并发不典型增生的遗传学核 DNA 分析
  • 批准号:
    62570593
  • 财政年份:
    1987
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Nationl Unification Thriugh the Modern emperor System
通过现代皇帝制度实现国家统一
  • 批准号:
    61450045
  • 财政年份:
    1986
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Nonlinear elliptic and parabolic PDEs, theories and applications
非线性椭圆和抛物线偏微分方程、理论和应用
  • 批准号:
    14540148
  • 财政年份:
    2002
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了