Existence Problem of Fxtremal Metran and Degeneration of Balanced Metrics

极值Metran的存在问题和平衡度量的退化

基本信息

项目摘要

(1) Related to the existence problem of extremal metrics, we studied various kinds of stabilities for manifolds For instance, we succeeded in showing that Chow-Mumford stability and Hilbert-Mumford stability are asymptotically equivalent (Chow-Mumford stability implies HiItert-Mumford stability by the work of Fogarty, while nothing was known even asymptotically about its converse).(2) Associated to the Monge-Ampere equation for the Kahler-Einstein metric on an Einstein toric surface, we have a hyperbolic affine sphere equation with Dirichlet condition defined on a bounded convex C^<2> domain in R^<2>, and for the solution of the equation, we obtain a very explicit asymptotic expansion along the boundary.(3) It is known that the anticanonical bundle of a toric or Kahler Einstein Fano manifold admits a Ricci-flat Kahler metric inducing a Sasaki-Einstein metric on a suitable quotient. We studied analogous examples for anticanonical bundles of Fano manifolds with Kahler-Ricci solitons.
(1) Related to the existence problem of extremal metrics, we studied various kinds of stabilities for manifolds For instance, we succeeded in showing that Chow-Mumford stability and Hilbert-Mumford stability are asymptotically equivalent (Chow-Mumford stability implies HiItert-Mumford stability by the work of Fogarty, while nothing was known even asymptotically about its converse).(2) Associated to the Monge-Ampere Kahler-Einstein度量的方程式在爱因斯坦复曲面上,我们具有在r^<2>中定义的dirichlet条件的双曲线仿射球方程,在r^<2>中定义了dirichlet条件,对于方程式解决方案,我们的方程式是在方程式的解决方程,我们获得了一个非常明显的沿边界的范围或buns的buns。歧管承认ricci-flat kahler度量标准在合适的商上诱导sasaki-einstein度量。我们研究了与Kahler-Icci Solitons的Fano歧管的抗议捆绑包相似的例子。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flat fronts in hyperbolic 3-space and their caustics
  • DOI:
    10.2969/jmsj/1180135510
  • 发表时间:
    2005-11
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
  • 通讯作者:
    M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
Extromal metrics and stabilities on polarized manifolds
极化流形上的极值度量和稳定性
Extremal metrics and stabilities on polarized manifolds
  • DOI:
    10.4171/022-2/39
  • 发表时间:
    2006-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Mabuchi
  • 通讯作者:
    T. Mabuchi
An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I
  • DOI:
    10.1007/s00222-004-0387-y
  • 发表时间:
    2004-10
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    T. Mabuchi
  • 通讯作者:
    T. Mabuchi
An affine sphere equation associated to Einstein toric surfaces
与爱因斯坦复曲面相关的仿射球方程
共 12 条
  • 1
  • 2
  • 3
前往

MABUCHI Toshiki的其他基金

The study of the existence problem in the Donaldson-Tian-Yau conjecture
唐纳森-天丘猜想的存在性问题研究
  • 批准号:
    25287010
    25287010
  • 财政年份:
    2013
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Geometry of Ricci solitons on complex manifolds
复流形上 Ricci 孤子的几何
  • 批准号:
    20244005
    20244005
  • 财政年份:
    2008
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
    Grant-in-Aid for Scientific Research (A)
Symplectic Structures and Geometry of Canonical Bundle
正则丛的辛结构和几何
  • 批准号:
    10440021
    10440021
  • 财政年份:
    1998
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
    Grant-in-Aid for Scientific Research (B).

相似国自然基金

创新的尾部相关测度指标及其在极端突发事件的理论研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
树轮多指标记录的天山地区极端气候干旱事件及驱动机制和对树木生长的影响
  • 批准号:
    41871030
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
桂林凉风洞洞穴滴水和现代沉积物对强降水/极端降水事件的响应关系研究
  • 批准号:
    41701235
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
清至民国长江中下游地区重大水灾的社会影响传递过程
  • 批准号:
    41701219
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
中国极端气候事件群发性特征及诊断识别方法研究
  • 批准号:
    41005043
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New Methods for Proving Existence of Extremal Functions Using Metric Spaces
使用度量空间证明极值函数存在性的新方法
  • 批准号:
    547737-2020
    547737-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
    Postgraduate Scholarships - Doctoral
New Methods for Proving Existence of Extremal Functions Using Metric Spaces
使用度量空间证明极值函数存在性的新方法
  • 批准号:
    547737-2020
    547737-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
    Postgraduate Scholarships - Doctoral
New Methods for Proving Existence of Extremal Functions Using Metric Spaces
使用度量空间证明极值函数存在性的新方法
  • 批准号:
    547737-2020
    547737-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
    Postgraduate Scholarships - Doctoral
Extremal metricの存在問題と多様体の相対安定性について
论极值度量的存在问题及流形的相对稳定性
  • 批准号:
    22840044
    22840044
  • 财政年份:
    2010
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up
Study on the theory of conformal embeddings of a Riemann surface focused on the hyperrbolic metric and hydrodynamics of viscous fluids
黎曼曲面共形嵌入理论研究,重点关注粘性流体的双曲度量和流体动力学
  • 批准号:
    16540157
    16540157
  • 财政年份:
    2004
  • 资助金额:
    $ 17.8万
    $ 17.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)