The Foundation of Mathematical Statistics on Quantum Inference and Its Applications

量子推理的数理统计基础及其应用

基本信息

  • 批准号:
    14204006
  • 负责人:
  • 金额:
    $ 29.7万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

The statistical investigation on various themes was done as follows. (1) Involving a relationship between statistical models and statistics, the properties of the models were discussed and some interesting results on the behavior of various statistics are obtained. (2) In the theory of statistics to finance, time series and their applications, statistical procedures were shown to be asymptotically useful. (3) In the experimental design and its related area, the mathematical structure is clarified by combinatorial procedures, and results intended to apply to practical problems were obtained. (4) In statistical sequential inference, some sequential procedures were proposed, and their properties were discussed in details. The asymptotic efficiencies were shown. (5) The construction of mathematically fundamental theory of biostatistics is tried, and statistically inferential procedures are shown to play an important role. In particular, bioassay test, score test etc. were shown to be usefu … More l. (6) The relationship between non-locality in quantum mechanics and statistical inference is clarified, and inferential procedures is also shown to be efficient in quantum estimation and quantum test. Further, it is recognized to play an important role as the theoretical base of concrete physical phenomena. (7) In statistical inference, on the lower bound for tail probabilites of consistent estimators, the first and second order asymptotic efficiencies are investigated from a different viewpoint from conventional Bahadur efficiency. And in order to unify both of non-parametric and parametric tests, the mathematical setup was done, new test statistics based on estimators of spectral density matrics were proposed, and their asymptotic properties are derived. (8) Under a family of non-parametric quantum states, state estimation, prediction of quantum state, quantum information geometry and discrimination problem on quantum states are trated, and new interesting results were obtained. Many symposium on the above were held and active discussion and mutual exchange of information were also done. Their results were summarized as a volume. Less
对各个主题的统计调查如下:(1)涉及统计模型和统计之间的关系,讨论了模型的属性,并获得了有关各种统计行为的一些有趣的结果。 (3) 在实验设计及其相关领域,通过组合程序阐明了数学结构,并获得了适用于实际问题的结果 (4) (5)尝试了生物统计学数学基础理论的构建,并证明了特别的推理程序的重要作用。特别是,生物测定测试、测试分数等被证明是有用的……更多 l. (6) 阐明了量子力学中的非局域性和统计推理之间的关系,并且推理程序也被证明是有效的。此外,它被认为作为具体物理现象的理论基础发挥着重要作用。 (7) 在统计推断中,关于一致估计量的尾部概率的下界,一阶和二阶渐近效率。从与传统巴哈杜尔效率不同的角度进行研究,并且为了统一非参数和参数测试,完成了数学设置,提出了基于谱密度矩阵估计的新测试统计量。 (8)对非参数量子态族下的状态估计、量子态预测、量子信息几何和量子态判别问题进行了研究,取得了许多有趣的新成果。并进行了积极的讨论和相互交流,成果总结为一卷。

项目成果

期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hida, E., Akahira, M.: "An approcimation to the generalyed hyporgeomatric distribution"Statistical Papers. 44-4. 483-497 (2003)
Hida, E., Akahira, M.:“对广义下几何分布的近似”统计论文。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akahira, M., Takeuchi, K.: "Joint Statistical Papers of Akahira and Takeuchi"World Scientific. 620 (2003)
Akahira,M.,Takeuchi,K.:“Akahira 和 Takeuchi 的联合统计论文”世界科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Asymptotic second-order efficiency for multivariate two-stage estimation of a linear function of normal mean rectors
正态均值线性函数的多元两阶段估计的渐近二阶效率
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Aoshima;Y.Takada
  • 通讯作者:
    Y.Takada
Statistics of Singular Models. (In Japanese)
奇异模型的统计。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fukumizu;K.;Kuriki;S.;Takeuchi;K.;Akahira;M.
  • 通讯作者:
    M.
Non-validity of affine α-resolvability in regular group divisible designs.
常规群可分设计中仿射 α 分辨性的无效性。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AKAHIRA Masafumi其他文献

AKAHIRA Masafumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AKAHIRA Masafumi', 18)}}的其他基金

The clarification of hierarchical structure of statistical deficiency
统计缺陷层次结构的澄清
  • 批准号:
    15K11992
  • 财政年份:
    2015
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
New Development of Statistical Experiment and Its Applications
统计实验及其应用的新进展
  • 批准号:
    24650146
  • 财政年份:
    2012
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The clarification of the structure of the inverse problem in statistics and its applications
统计学中反问题结构的阐明及其应用
  • 批准号:
    21650063
  • 财政年份:
    2009
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Theory of the foundation of mathematical statistics to analyze the biological information and its applications
生物信息分析的数理统计基础理论及其应用
  • 批准号:
    19340020
  • 财政年份:
    2007
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Researches on the Non-Regular Inference Theory and the Concepts of the Amounts of Information
非常规推理理论与信息量概念的研究
  • 批准号:
    10304005
  • 财政年份:
    1998
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Researches on the higher order asymptotic theory of statistical inference
统计推断的高阶渐近理论研究
  • 批准号:
    07454030
  • 财政年份:
    1995
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Researches on Statistical Inference and Its Applications
统计推断及其应用研究
  • 批准号:
    02302010
  • 财政年份:
    1990
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似国自然基金

量子性质测试算法的若干研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子网络上的高效量子态验证和纠缠测试
  • 批准号:
    92165109
  • 批准年份:
    2021
  • 资助金额:
    79 万元
  • 项目类别:
    重大研究计划
组合熵概率统计检测方法测试量子密码序列统计分布特性
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
基于里德堡原子量子相干效应的天线近场测试探头研究
  • 批准号:
    62071040
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
量子密码系统实际安全性研究与测试评估
  • 批准号:
    61901483
  • 批准年份:
    2019
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
  • 批准号:
    10709399
  • 财政年份:
    2023
  • 资助金额:
    $ 29.7万
  • 项目类别:
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel optogenetic tool for noninvasive neuronal inhibition
用于非侵入性神经元抑制的新型光遗传学工具
  • 批准号:
    10353090
  • 财政年份:
    2022
  • 资助金额:
    $ 29.7万
  • 项目类别:
Multi-Platform Homogeneous Multiplexed Autoantibody Assay Based on Liquid Micropiston-Enhanced Time-Resolved Forster Resonance Energy Transfer
基于液体微活塞增强时间分辨福斯特共振能量转移的多平台同质多重自身抗体测定
  • 批准号:
    10576777
  • 财政年份:
    2022
  • 资助金额:
    $ 29.7万
  • 项目类别:
A test on quantum entanglement with Bell inequality violation detection at ultimately high energy collisions at LHC
大型强子对撞机最终高能碰撞中贝尔不等式违规检测的量子纠缠测试
  • 批准号:
    22H01235
  • 财政年份:
    2022
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了