Introduction of Error Estimation for Clarifying Fractal Phonomena
引入误差估计以澄清分形现象
基本信息
- 批准号:06650070
- 负责人:
- 金额:$ 0.38万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this study is to introduce the concept of reliability in the measurement concerning fractal phenomena, by proposing techniques of error estimation. The following outcomes are obtained :1. In the measurement of the "fractal dimension" of a realization "self-similar recurrent event process" proposed by Mandelbrot, two approaches are considered to be important. This study derived analytical error estimations of the obtained values by these approaches. The results suggest that a relatively small number of data are enough for obtaining accurate values for an ideal process.2. A new approach for testing the randomness of heteroskedastic time series data is proposed, and is successfully applied to finacial data. This approach detects existence of "mean reversion, " which is a feature of fractal caused by long term memory. This result also detects other types of serial correlations, which is important from financial point of view.3. In the analysis of the mechanism of "mean reversion, " it was found that stock market indices may behave in substantially different ways in the macroeconomic analysis. One must be careful in selecting them in their analysis.4. The error of observed "length" is analytically calculated for a polygonal approximation to a path of Brownian motion. This result is expected to show how the bias of observed "fractal dimension" convergers to the true value when the number of sampling points increases.5. It was found that the "digital straightness" and "digital convexity" are characterized in terms of the "length" and the "absolute curvature" proposed in the author. This fact shows that a relation of "digital geometry" and the "length" used in this approach is very close.
这项研究的目的是通过提出误差估计技术来介绍有关分形现象的可靠性概念。获得以下结果:1。在测量Mandelbrot提出的实现“实现的“分形维度””中,两种方法被认为很重要。这项研究得出了通过这些方法对获得值的分析误差估计。结果表明,相对较少的数据足以获得理想过程的准确值2。提出了一种测试异质时间序列数据随机性的新方法,并成功地应用于最佳数据。这种方法检测到“平均恢复”的存在,这是由长期记忆引起的分形特征。该结果还检测到其他类型的串行相关性,从财务角度来看,这很重要3。在对“平均恢复”机制的分析中,发现股票市场指数在宏观经济分析中的行为可能会大不相同。必须在分析中选择它们。4。分析观察到的“长度”的误差是针对布朗运动路径的多边形近似值计算的。预计该结果将显示观察到的“分形维度”收敛器的偏置如何在抽样点增加时与真实值。5。已经发现,“数字笔直度”和“数字凸度”的特征是作者提出的“长度”和“绝对曲率”。这一事实表明,在这种方法中使用的“数字几何”和“长度”的关系非常接近。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kishimoto: "Characterizing digital convexity and straightness in terms of "length" and "total absolute curvature"" Computer Vision and Image Understanding. (in press).
K.Kishimoto:“用“长度”和“总绝对曲率”来表征数字凸度和直线度”计算机视觉和图像理解。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Kishimoto: "Characterizing Digital Convexity and Digital Straightness in Terms of "Length"and "Total Absolute Curvature."" CVGIP:Image Understanding. (印刷中). (1995)
Kazuo Kishimoto:“用“长度”和“总绝对曲率”表征数字凸度和数字直线度。”CVGIP:图像理解(1995 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kishimoto: "A new approach for testing the randomness of heteroskedastic time series data" Financial Engineering and the Japanese Markets. Vol.2. 197-218 (1995)
K.Kishimoto:“一种测试异方差时间序列数据随机性的新方法”金融工程和日本市场。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
"K.Kishimoto: "Characterizing digital convexity and straightness in terms of "length" and "total absolute curvature"" Computer Vision and Image Understanding. 63(印刷中). (1996)
“K.Kishimoto:“根据“长度”和“总绝对曲率”表征数字凸度和直线度”计算机视觉和图像理解。63(印刷中)。(1996)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kishimoto: "Characterizing digital convexity and straightness in terms of “length" and“total absolute curvature"" Computer Vision and Image Understanding. 63(印刷中). (1996)
K. Kishimoto:“根据“长度”和“总绝对曲率”表征数字凸度和直线度”计算机视觉和图像理解 63(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 7 条
- 1
- 2
KISHIMOTO Kazuo其他文献
The Nikkei 225 Futures of the Osaka Stock Exchange Are Bullish When the Available Liquidity on the Ask Side Is Deeper
当询问方可用流动性加深时,大阪证券交易所日经 225 期货看涨
- DOI:
- 发表时间:20122012
- 期刊:
- 影响因子:0
- 作者:LI Meng;Hui Xiaofeng;KISHIMOTO KazuoLI Meng;Hui Xiaofeng;KISHIMOTO Kazuo
- 通讯作者:KISHIMOTO KazuoKISHIMOTO Kazuo
Testing the Order Parameter of the Anderson Transition
测试安德森转变的阶次参数
- DOI:10.1143/jpsj.81.10470710.1143/jpsj.81.104707
- 发表时间:20122012
- 期刊:
- 影响因子:1.7
- 作者:LI Meng;Hui Xiaofeng;KISHIMOTO Kazuo;K. Yakubo and S. MizutakaLI Meng;Hui Xiaofeng;KISHIMOTO Kazuo;K. Yakubo and S. Mizutaka
- 通讯作者:K. Yakubo and S. MizutakaK. Yakubo and S. Mizutaka
共 2 条
- 1
KISHIMOTO Kazuo的其他基金
A study on transaction volumes and intervals in the financial market and its applications
金融市场交易量和交易间隔研究及其应用
- 批准号:2256005922560059
- 财政年份:2010
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
A New Approach for Estimating the Policy Positions of Parties and Districts Based on the Spatial Voting Theory‥‥Theoretical and Empirical Analysis
基于空间投票理论的政党和地区政策立场测算新方法‥‥理论与实证分析
- 批准号:1753009717530097
- 财政年份:2005
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Cooperative Ruling Sets and Its Applications
合作规则集及其应用
- 批准号:1556004715560047
- 财政年份:2003
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Stock price changes with market impacts and its application for pricing derivative securities
股票价格随市场影响的变化及其在衍生证券定价中的应用
- 批准号:1365006013650060
- 财政年份:2001
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Existence of Nash equilibria for optimum location problems and its applications
最优选址问题纳什均衡的存在性及其应用
- 批准号:1065006210650062
- 财政年份:1998
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Testing Randomess of Heteroskedastic Time Series Data Base of Simulation
异方差时间序列仿真数据库随机性检验
- 批准号:0865007508650075
- 财政年份:1996
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
相似国自然基金
中国出口在非经典测量误差视阈下的研究:误差来源、识别、估计与应用
- 批准号:72303265
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
反问题变分正则化方法的优化和离散误差估计
- 批准号:12371424
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
具有退化或间断通量的双曲方程的间断Galerkin方法误差估计
- 批准号:12301513
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的流依赖背景误差方差估计方法研究
- 批准号:42375150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
同化分析场误差的客观定量估计及其对改进集合预报初始扰动的作用
- 批准号:42375058
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:RGPIN-2021-04357RGPIN-2021-04357
- 财政年份:2022
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Accuracy estimation and improvement of surgical navigation system based on error probability distribution and error propagation model
基于误差概率分布和误差传播模型的手术导航系统精度估计与改进
- 批准号:22K1283822K12838
- 财政年份:2022
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:DGECR-2021-00428DGECR-2021-00428
- 财政年份:2021
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Discovery Launch SupplementDiscovery Launch Supplement
Study on wall stress model and error estimation for practical LES of separated and reattached flow
分离重附流实用LES壁面应力模型及误差估计研究
- 批准号:21K1408321K14083
- 财政年份:2021
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:RGPIN-2021-04357RGPIN-2021-04357
- 财政年份:2021
- 资助金额:$ 0.38万$ 0.38万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual