Topological invariants related to field theory

与场论相关的拓扑不变量

基本信息

项目摘要

Applying techniques of field theory in mathematical physics, we establishes a general framework to extract topological invariants of manifolds from infinite dimensional data.In late 80's Witten proposed a method to define topological invariants of 3-manifolds as the partition function of the Chern-Simons functional defined over the space of connections on the manifold. We clarified the relation between the Chern-Simons theory for 3-manifolds with boundary and the two-dimensional conformal field theory. We formulated the conformal field theory as the theory of connections on vector bundles over the moduli space of Riemann surfaces and expressed the Witten invariants by the holonomy of the connection. Moreover, from the above point of view we obtained lower estimates for classical invariants for knots and 3-manifolds.The critical points of the Chern-Simons functional are flat connections and it is known that the perturbative expansion at flat connections are described by Feynman diagrams. We investigated topological invariants arising from such perturbative expansion from the viewpoint of integral geometry-integral of Green forms on the configuration space. Motivated by Chern-Simons perturbative theory for 3-manifolds with boundary, we studied the space of chord diagrams on Riemann surfaces and its quantization, together with the symplectic geometry of the moduli space of flat connections. In particular, in the case of the torus, we investigated the holonomy of the elliptic KZ connection and defined Vassiliev type invariants for knots in the product of the torus and the unit inverval.
在数学物理学中应用现场理论的技术,我们建立了一个通用框架,从无限尺寸数据中提取歧管的拓扑不变性。在80年代后期,Witten提出了一种方法,提出了一种定义3个manifolds的拓扑不变性的方法,将其作为Chern-Simons的分区功能,在该连接空间上均可在casticold overold overold of Castionold上定义。我们阐明了Chern-Simons理论的3个模具与边界和二维形式的保形场理论之间的关系。我们将共形场理论提出为矢量束的连接理论,上面的载体束上的模量空间,并通过连接的载体表达了witten不变性。此外,从上面的角度来看,我们获得了针对结和3个manifold的经典不变性的估计值。Chern-Simons功能的临界点是平坦的连接,众所周知,Feynman图描述了平坦连接处的扰动扩展。我们研究了从构型空间上绿色形式的积分几何形式的观点的角度来调查了这种扰动膨胀引起的拓扑不变性。由Chern-simons扰动理论的三个字体带有边界的扰动理论,我们研究了Riemann表面上的和弦图及其量化的空间,以及平面连接模量空间的符号几何形状。特别是,在圆环的情况下,我们研究了椭圆KZ连接的整体,并定义了vassiliev型不变式,用于圆环和单位inverval的产物中的结。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Kohno: "Vassiliev invariants and de Rham complex on the space of knots" Contemporary Mathemahis. 179. 123-138 (1994)
T. Kohno:“结空间上的瓦西里耶夫不变量和德拉姆复形”当代数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kohno and T.Takata: "Level-rank duality of Witten's 3-manifold invariants" Advanced Studies in Pure Mthematics. 24. (1996)
T.Kohno 和 T.Takata:“Witten 3 流形不变量的等级对偶性”纯数学高级研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.kohno: "Topological invariants of 3-manifolds using representations of mapping class groupsII" Contemporary Mathematics. 175. 193-217 (1994)
T.kohno:“使用映射类群表示的 3 流形的拓扑不变量 II”当代数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kohno: "Vassiliev invariants and de Rham complex on the space of Knots" Contemporary Mathematics. (1995)
T.Kohno:“结空间上的瓦西里耶夫不变量和德拉姆复形”当代数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Kohno T. Takata: "Level-rank duality of Witten's 3-manifold invariants" Advanced Stud. in Pure Marh.24. (1996)
T. Kohno T. Takata:“Witten 3 流形不变量的等级对偶性”高级梭哈。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 17 条
  • 1
  • 2
  • 3
  • 4
前往

KOHNO Toshitake的其他基金

Discrete geometry and creation of 3 dimensional geometric models
离散几何和 3 维几何模型的创建
  • 批准号:
    15K13434
    15K13434
  • 财政年份:
    2015
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
    Grant-in-Aid for Challenging Exploratory Research
Visualization in geometry and construction of 3-dimensional mathematical models
几何可视化和 3 维数学模型的构建
  • 批准号:
    23654022
    23654022
  • 财政年份:
    2011
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
    Grant-in-Aid for Challenging Exploratory Research
Braid groups, iterated integrals and geometric structures of configuration spaces
配置空间的辫群、迭代积分和几何结构
  • 批准号:
    20340010
    20340010
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Theory of braids, hyperplane arrangements and applications to conformal field theory
辫子理论、超平面排列及其在共形场理论中的应用
  • 批准号:
    16340014
    16340014
  • 财政年份:
    2004
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
De Rham Theory of Loop Spaces and Quantum Topological Invariants
环空间和量子拓扑不变量的德拉姆理论
  • 批准号:
    12440014
    12440014
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Topological Field Theory and Related Geometry
拓扑场论及相关几何
  • 批准号:
    09304005
    09304005
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
    Grant-in-Aid for Scientific Research (A)
MATHEMATICAL PHYSICS,TOPOLOGY AND RELATED ALGEBRAIC STRUCTURE
数学物理、拓扑及相关代数结构
  • 批准号:
    03640073
    03640073
  • 财政年份:
    1991
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

共形超材料天线的场变换理论和智能方法研究
  • 批准号:
    61701411
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
子因子与共形场理论
  • 批准号:
    11471064
  • 批准年份:
    2014
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
模性范畴的Brauer群的计算及其应用
  • 批准号:
    11301266
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Kerr/CFT对偶及其相关问题的研究
  • 批准号:
    11205048
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Research Grant
    Research Grant
Multilegged amplitudes: from CFT to Higgs production at future colliders
多足振幅:从 CFT 到未来对撞机希格斯粒子的产生
  • 批准号:
    23K19047
    23K19047
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
  • 批准号:
    23KJ0540
    23KJ0540
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
    2310426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Turning up the Temperature in Conformal Field Theory
提高共形场论中的温度
  • 批准号:
    567953-2022
    567953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
    $ 1.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
    Postgraduate Scholarships - Doctoral