Best basis construction and comparison of trial functions for ill-posed inverse problems in Earth sciences - studied at the examples of global-scale seismic tomography and gravitational field modelling

地球科学中不适定反问题的最佳基础构建和试验函数比较——以全球尺度地震层析成像和重力场建模为例进行研究

基本信息

  • 批准号:
    437390524
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The choice of basis functions can essentially influence the result of an inverse problem. In view of today's demands on the accuracy of models, we are, consequently, confronted with the question how the obtained results can be confirmed or improved, respectively, by verifying or correcting (if necessary) the used basis functions. The arising questions are: can there be artefacts due to the used numerical method in individual structures in the mapping of e.g. a seismic velocity field or of the gravitational field? To what extent are data sensitive to single regional changes in the solution? Vice versa, how can local variations in the Earth or at the Earth's surface or, alternatively, known local errors in a current model be considered in a model, without deteriorating the model elsewhere? The latter appears to be better to achieve with local basis functions (such as radial basis functions) than with global basis functions (such as spherical harmonics).In the recent years, the principal investigator and his research group have developed several algorithms (the Regularized Functional Matching Pursuit, RFMP, and its enhancements) which are able to iteratively construct a kind of a best basis for an inverse problem. These methods were particularly elaborated for scenarios on the sphere or the ball. The applicability to several problems has already been demonstrated. However, the methods still have some limitations. E.g. large data sets, as they are common for the gravitational field, cannot be handled up to now, and the traveltime tomography does not allow efficient formulae for the forward calculations.Within this project, these algorithms shall be further enhanced, in order to make them better applicable to realistic problems in Earth sciences. We particularly consider global-scale seismic tomography and high-dimensional modelling of the gravitational potential. We expect especially new insights into these two practical problems. In the former case, the above mentioned question arises concerning possible artefacts in velocity models. RFMP and its variants yield the possibility to automatize the multi-scale adaptation of grid structures, which has previously been done manually. We anticipate an improvement of the accuracy of the calculated models. Moreover, the set of trial functions (which is called a dictionary) may be varied, in order to test how stable some aspects of a model are. This way, artefacts due to the choice of the basis functions can be better identified. In the case of gravitational field modelling, efficient ways shall be found which enable us to approximate local anomalies as locally concentrated and as accurately as possible, also in high-resolution models, by the choice of optimal additional basis functions (splines, wavelets, Slepians). For this purpose, new innovative ways of improving existing algorithms need to be found.
基函数的选择可以本质上影响反问题的结果。鉴于当今对模型准确性的要求,我们因此面临着如何通过验证或纠正(如果必要)所使用的基函数来分别确认或改进所获得的结果的问题。出现的问题是:由于在映射中的各个结构中使用了数值方法,例如,是否会出现伪影。地震速度场还是重力场?数据在多大程度上对解决方案中的单个区域变化敏感?反之亦然,如何在模型中考虑地球或地球表面的局部变化,或者当前模型中已知的局部误差,而不会使其他地方的模型恶化?后者似乎用局部基函数(如径向基函数)比全局基函数(如球谐函数)更好地实现。近年来,主要研究者和他的研究小组开发了几种算法(正则化功能匹配追踪、RFMP 及其增强)能够迭代地构建逆问题的最佳基础。这些方法是专门针对球体或球体上的场景而精心设计的。已经证明了它对几个问题的适用性。然而,这些方法仍然存在一些局限性。例如。迄今为止,引力场中常见的大型数据集还无法处理,并且走时层析成像不允许有效的正演计算公式。在这个项目中,这些算法将进一步增强,以便使它们成为可能。更好地适用于地球科学中的现实问题。我们特别考虑全球尺度地震层析成像和重力势的高维建模。我们期待对这两个实际问题有特别新的见解。在前一种情况下,出现了上述关于速度模型中可能的人为因素的问题。 RFMP 及其变体使网格结构的多尺度适应自动化成为可能,而这以前是手动完成的。我们预计计算模型的准确性将会提高。此外,试验函数集(称为字典)可能会有所不同,以便测试模型某些方面的稳定性。这样,可以更好地识别由于基函数的选择而产生的伪影。在重力场建模的情况下,应找到有效的方法,使我们能够通过选择最佳的附加基函数(样条、小波、Slepians)尽可能准确地近似局部异常,在高分辨率模型中也是如此。 )。为此,需要找到改进现有算法的新创新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Volker Michel其他文献

Professor Dr. Volker Michel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Volker Michel', 18)}}的其他基金

Numerical investigation of dictionary-based regularization for inverse problems and approximation problems on spheres and balls - with applications to seismic tomography and high-dimensional geophysical modelling
基于字典的正则化球体反演问题和近似问题的数值研究 - 及其在地震层析成像和高维地球物理建模中的应用
  • 批准号:
    226407518
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dictionary Learning for the non-linear approximation of spherical functions
球函数非线性逼近的字典学习
  • 批准号:
    169129297
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kombination von modernen mathematischen Verfahren zur Regularisierung Inverser Probleme in der Medizin und den Geowissenschaften
结合现代数学方法对医学和地球科学中的反问题进行正则化
  • 批准号:
    47059215
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung von lokalisierenden Spline- und Wavelet-Verfahren zur kombinierten Bestimmung des Erdinneren aus Gravitationsfeld- und Erdbebendaten
开发用于根据重力场和地震数据联合确定地球内部的定位样条和小波方法
  • 批准号:
    18878082
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

数字孪生驱动下城市公共基础设施建造服务化绩效治理机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
模块化全装配大跨度钢结构智能和工业化建造基础理论和关键技术研究
  • 批准号:
    52130809
  • 批准年份:
    2021
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
装配式建筑智能建造机器人基础研究及集成示范应用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    1100 万元
  • 项目类别:
    联合基金项目
层状盐岩体油气储库控制溶解建造基础研究
  • 批准号:
    50874078
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
计算机集成建筑系统(CIBS)的基础性研究
  • 批准号:
    50378047
  • 批准年份:
    2003
  • 资助金额:
    14.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular basis of MDS pathogenesis and construction of novel MDS prognostic model
MDS发病机制的分子基础及新型MDS预后模型的构建
  • 批准号:
    21K08366
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of a new Vero cell system to be the basis for coronavirus research and vaccine development
构建新的 Vero 细胞系统作为冠状病毒研究和疫苗开发的基础
  • 批准号:
    21H02630
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structural basis of the flagellar axial structure and its construction
鞭毛轴向结构的结构基础及其构建
  • 批准号:
    21H02443
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular Basis for Structural and Behavioral Effects of Chronic Opioid Exposure
慢性阿片类药物暴露的结构和行为影响的分子基础
  • 批准号:
    10209941
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Molecular basis of multimeric antibody fragments towards the construction of highly functional antibody-drug conjugates
构建高功能抗体-药物缀合物的多聚抗体片段的分子基础
  • 批准号:
    20K05721
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了