Time-resolved low energy photoelectron diffraction for the study of surface structural dynamics with sub-100 fs temporal resolution

用于研究表面结构动力学的时间分辨低能光电子衍射,时间分辨率低于 100 fs

基本信息

项目摘要

Based on the diffraction of low energy photoelectrons we aim for proving and applying a novel experimental concept for the study of ultrafast structural dynamics at surfaces with sub-100 fs temporal resolution. Next to structural information, the detected transient photoemission signal will at the same time carry information about excitation and relaxation of the involved surface electronic system potentially allowing for a direct correlation of structural and carrier dynamics at surfaces. Within our studies we will focus on sub-monolayer adsorption of phthalocyanine molecules on noble metal surfaces. The distinctive low energy photoelectron diffraction patterns that have been reported for different representatives of this adsorbate-surface system in static ARPES experiments represent an ideal test bed for the examination of the capabilities and limitations of the proposed concept. Furthermore, we expect that the combined interrogation of structural and carrier dynamics can shed new light into the complex interaction mechanisms governing the multifaceted properties of this metal-organic interface class. Two different experimental configurations will be realized and tested within the project: In using 70 fs NUV laser pulses (6 eV) for the generation of the probing photoelectrons we will be able to probe structural and carrier dynamics at an ultimate temporal resolution below 100 fs. The intrinsic very low kinetic energies of the photoelectrons of Ekin < 2 eV will, however, limit our studies to small and moderate pump fluences due to a signal background arising from pump-induced parasitic electron emission. In an alternative configuration we will use 18 eV vacuum ultraviolet pulses from a HHG source so that also experiments at significantly higher pump fluences will become possible. In this fluence regime we expect to be able to trigger also structural phase transitions in the adsorbate layer.
基于低能光电子的衍射,我们的目标是证明和应用一种新颖的实验概念,用于研究具有亚 100 fs 时间分辨率的表面超快结构动力学。携带有关表面电子系统的激发和弛豫的信息,可能允许表面结构和载流子动力学的直接关联。在我们的研究中,我们将重点关注贵金属表面上酞菁分子的亚单层吸附。在静态 ARPES 实验中针对该吸附表面系统的不同代表报告的低能光电子衍射图案代表了检查所提出概念的能力和局限性的理想测试台此外,我们期望结构的组合询问。和载流子动力学可以为控制这种金属有机界面类的多方面特性的复杂相互作用机制提供新的线索,该项目将实现并测试两种不同的实验配置:使用 70 fs NUV 激光脉冲(6 eV)。为了产生探测光电子,我们将能够以低于 100 fs 的最终时间分辨率探测结构和载流子动力学,然而,Ekin 光电子的固有极低动能 < 2 eV 将限制我们的研究范围。由于泵引起的寄生电子发射产生的信号背景,我们将使用来自 HHG 源的 18 eV 真空紫外脉冲,从而可以在显着的条件下进行实验。更高的泵注量将成为可能。在这种注量状态下,我们期望能够触发吸附层中的结构相变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Bauer其他文献

Professor Dr. Michael Bauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Bauer', 18)}}的其他基金

Time-resolved studies of ultrafast electronic processes in two-dimensional solids in the strongly non-thermal regime
强非热状态下二维固体超快电子过程的时间分辨研究
  • 批准号:
    389191527
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Jena Biophotonic and Imaging Laboratory
耶拿生物光子和成像实验室
  • 批准号:
    284067622
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Core Facilities
Ultrakurzeitdynamik von Ordnungsprozessen in stark korrelierten Festkörpern untersucht mit zeit- und winkelaufgelöster XUV-Photoelektronenspektroskopie
利用时间和角度分辨 XUV 光电子能谱研究高度相关固体中有序过程的超快动力学
  • 批准号:
    210740373
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Heme and heme degradation products as effectors of hepatic perfusion and excretion failure
血红素和血红素降解产物作为肝灌注和排泄失败的效应物
  • 批准号:
    214875369
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Units
Early cognitive behavioural psychotherapy in subjects at high risk for bipolar affective disorders (Acronym: EarlyCBT)
对双相情感障碍高危人群进行早期认知行为心理治疗(缩写:EarlyCBT)
  • 批准号:
    130211207
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Clinical Trials
Femtosecond dynamics and control of metal-organic hybrid plasmonic systems
金属有机混合等离子体系统的飞秒动力学和控制
  • 批准号:
    138207511
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Exploring electron-phonon interactions and coherent-phonon control of quantum materials using frequency-domain ARPES
使用频域 ARPES 探索量子材料的电子-声子相互作用和相干声子控制
  • 批准号:
    499426961
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Time-resolved ARPES of solids – entering the strong-field regime
固体的时间分辨 ARPES â 进入强场状态
  • 批准号:
    465690255
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
  • 批准号:
    10419915
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
  • 批准号:
    10646508
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Smart-phone-integrated, non-invasive, depth-resolved optical spectroscopy for the detection of neonatal jaundice
用于检测新生儿黄疸的智能手机集成、非侵入性、深度分辨光谱
  • 批准号:
    10677538
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Smart-phone-integrated, non-invasive, depth-resolved optical spectroscopy for the detection of neonatal jaundice
用于检测新生儿黄疸的智能手机集成、非侵入性、深度分辨光谱
  • 批准号:
    10677538
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Smart-phone-integrated, non-invasive, depth-resolved optical spectroscopy for the detection of neonatal jaundice
用于检测新生儿黄疸的智能手机集成、非侵入性、深度分辨光谱
  • 批准号:
    10346706
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了