Macro-scale modeling concepts for bacterial growth and transport in advective two-phase porous media systems

平流两相多孔介质系统中细菌生长和运输的宏观建模概念

基本信息

项目摘要

Porous media provide excellent living conditions for bacteria because their habitat is protected but still allows a continuous nutrient supply. As a consequence, microorganisms exist and make a substantial contribution to many environmental and engineered porous media systems. When these porous media systems are used for engineered or industrial applications it is important to understand the interaction between flow, transport and microbiological processes. A variety of modeling methods exists in the literature, but they were predominantly developed for single-phase porous media systems. Since, in addition, the opaque nature of porous media makes it difficult to observe and understand bacterial processes which occur in the pores (e.g. attachment/detachment and formation of biofilms), these processes are insufficiently understood.In this project artificial porous structures between two glass plates, referred to as glass-silicon-glass micromodels, will be applied to investigate the behavior of bacteria in porous media saturated by two phases. These transparent quasi two-dimensional micromodels allow the direct observation of bacterial processes, as e.g. growth, transport, and attachment/detachment, by microscopic analysis. The bacteria used for laboratory experiments belong to the class of methanogenic archaea. The detailed interpretation of the experimental results by image processing will allow to generate spatially and temporally resolved data of bacterial counts and their structure and movement. An improved mathematical model describing the bacterial growth and movement in two-phase porous media systems will be developed based on these data sets. The model intends to consider the bacterial growth under non-nutrient limited conditions, the existence of different bacterial structures (plankton and biofilm), their individual transport properties and attachment and detachment processes. For testing and parametrizing the newly developed model, it will be numerically implemented based on a diagonally implicit Runge-Kutta time discretization method which is well suited to incorporate the strong non-linear source terms.The application of the theoretical model is devoted to the technology of microbial underground methanation, which leads to the transformation of the injected hydrogen and carbon dioxide to methane by intensive bacterial reactions.
多孔介质为细菌提供了极好的生存条件,因为它们的栖息地受到保护,但仍然允许持续的营养供应。因此,微生物的存在并对许多环境和工程多孔介质系统做出了重大贡献。当这些多孔介质系统用于工程或工业应用时,了解流动、传输和微生物过程之间的相互作用非常重要。文献中存在多种建模方法,但它们主要是针对单相多孔介质系统开发的。此外,由于多孔介质的不透明性质使得很难观察和理解孔中发生的细菌过程(例如附着/分离和生物膜的形成),因此对这些过程的了解还不够。在这个项目中,两个之间的人造多孔结构玻璃板,称为玻璃-硅-玻璃微模型,将用于研究细菌在两相饱和的多孔介质中的行为。这些透明的准二维微模型可以直接观察细菌过程,例如细菌生长过程。通过显微镜分析来了解生长、运输和附着/分离。用于实验室实验的细菌属于产甲烷古菌类。通过图像处理对实验结果进行详细解释将能够生成细菌计数及其结构和运动的空间和时间解析数据。将根据这些数据集开发一个改进的数学模型,描述两相多孔介质系统中的细菌生长和运动。该模型旨在考虑非营养限制条件下的细菌生长、不同细菌结构(浮游生物和生物膜)的存在、它们各自的运输特性以及附着和分离过程。为了测试和参数化新开发的模型,它将基于对角隐式龙格-库塔时间离散方法进行数值实现,该方法非常适合合并强非线性源项。理论模型的应用致力于该技术微生物地下甲烷化作用,通过强烈的细菌反应将注入的氢气和二氧化碳转化为甲烷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Birger Hagemann其他文献

Dr.-Ing. Birger Hagemann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向网约平台的大规模农机协同调度优化研究
  • 批准号:
    72301036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向大规模高维数据的高效相似性检索方法研究
  • 批准号:
    62302110
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro- and macro-scale cortical dynamics underlying visual attention
视觉注意力背后的微观和宏观皮层动力学
  • 批准号:
    8644337
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了