Macro-scale modeling concepts for bacterial growth and transport in advective two-phase porous media systems

平流两相多孔介质系统中细菌生长和运输的宏观建模概念

基本信息

项目摘要

Porous media provide excellent living conditions for bacteria because their habitat is protected but still allows a continuous nutrient supply. As a consequence, microorganisms exist and make a substantial contribution to many environmental and engineered porous media systems. When these porous media systems are used for engineered or industrial applications it is important to understand the interaction between flow, transport and microbiological processes. A variety of modeling methods exists in the literature, but they were predominantly developed for single-phase porous media systems. Since, in addition, the opaque nature of porous media makes it difficult to observe and understand bacterial processes which occur in the pores (e.g. attachment/detachment and formation of biofilms), these processes are insufficiently understood.In this project artificial porous structures between two glass plates, referred to as glass-silicon-glass micromodels, will be applied to investigate the behavior of bacteria in porous media saturated by two phases. These transparent quasi two-dimensional micromodels allow the direct observation of bacterial processes, as e.g. growth, transport, and attachment/detachment, by microscopic analysis. The bacteria used for laboratory experiments belong to the class of methanogenic archaea. The detailed interpretation of the experimental results by image processing will allow to generate spatially and temporally resolved data of bacterial counts and their structure and movement. An improved mathematical model describing the bacterial growth and movement in two-phase porous media systems will be developed based on these data sets. The model intends to consider the bacterial growth under non-nutrient limited conditions, the existence of different bacterial structures (plankton and biofilm), their individual transport properties and attachment and detachment processes. For testing and parametrizing the newly developed model, it will be numerically implemented based on a diagonally implicit Runge-Kutta time discretization method which is well suited to incorporate the strong non-linear source terms.The application of the theoretical model is devoted to the technology of microbial underground methanation, which leads to the transformation of the injected hydrogen and carbon dioxide to methane by intensive bacterial reactions.
多孔培养基为细菌提供了良好的生活条件,因为它们的栖息地得到了保护,但仍然允许持续的营养供应。结果,微生物存在,并为许多环境和工程的多孔媒体系统做出了重大贡献。当这些多孔媒体系统用于工程或工业应用时,重要的是要了解流量,运输和微生物过程之间的相互作用。文献中存在多种建模方法,但主要是针对单相多孔介质系统开发的。此外,由于多孔媒体的不透明性质使观察和理解毛孔中发生的细菌过程(例如,依恋/脱离和生物膜的形成),这些过程不足以理解。在两个玻璃板之间的人造多孔结构在两个玻璃板之间,被称为玻璃中的玻璃胶片,将其表现为玻璃胶片微型媒体,并在两种情况下进行了媒体媒体的调查。这些透明的准二维微型模型允许直接观察细菌过程,例如通过微观分析,生长,运输和附着/分离。用于实验室实验的细菌属于甲烷古细菌的类别。图像处理对实验结果的详细解释将允许生成细菌计数的空间和时间分析数据及其结构和运动。将根据这些数据集开发一个改进的数学模型,描述了两相多孔介质系统中细菌生长和运动。该模型旨在考虑在非营养有限条件下的细菌生长,存在不同细菌结构(浮游生物和生物膜),其单个运输特性以及附着和脱离过程。 For testing and parametrizing the newly developed model, it will be numerically implemented based on a diagonally implicit Runge-Kutta time discretization method which is well suited to incorporate the strong non-linear source terms.The application of the theoretical model is devoted to the technology of microbial underground methanation, which leads to the transformation of the injected hydrogen and carbon dioxide to methane by intensive bacterial reactions.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Birger Hagemann其他文献

Dr.-Ing. Birger Hagemann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
  • 批准号:
    32370477
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于容量驱动的大规模异构天线阵列关键技术研究
  • 批准号:
    62301460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向非对称收发机的大规模MIMO传输理论与方法研究
  • 批准号:
    62301221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro to macro scale modeling of electrical machines
电机的微观到宏观建模
  • 批准号:
    RGPIN-2019-05313
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Micro- and macro-scale cortical dynamics underlying visual attention
视觉注意力背后的微观和宏观皮层动力学
  • 批准号:
    8644337
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了