Novel electronic and magnetic properties of high Entropy Oxides

高熵氧化物的新颖电子和磁性特性

基本信息

项目摘要

This project is devoted to explore novel high-entropy oxides (HEOx) with exotic electronic and magnetic properties. HEOx is a novel class of materials discovered recently (C. M. Rost et al, Nat. Commun. 2015), by extending to oxides the concept of high-entropy materials that is well-known for metallic alloys. They comprise at least five different cations and are obtained by heating at high temperature and subsequent quenching. When the temperature is large enough, the entropy of configuration becomes dominant in the Gibbs energy, which drives the formation of a metastable solid-solution instead of enthalpy driven phases. Such entropy-stabilized oxides can be frozen at room temperature by quenching. The first synthesized HEOx, (MgCoNiCuZn)O, has a simple rocksalt structure. Interestingly, some of the constituting binary oxides do not crystallize in the rocksalt structure and even do not form solid solutions. Other types of HEOx with perovskite and spinel structures have been reported, suggesting a huge variety of materials to be explored. Unfavorable cationic dopants such as Zn2+ in an octahedral site may be able to be introduced in the HEOx. These make HEOx quite promising in the development of new oxide materials. We will explore new HEOx with perovskite, pyrochlore, spinel and related structures in this project.HEOx serve not only as a mine of materials but also as a mine of unexpected functionalities, partly due to the local lattice distortions with unconventional cation arrangement. In the rocksalt-type HEOx, we have discovered unexpected functions such as a colossal dielectric response, a high ion mobility over 1 mS/cm for lithium and a long-range antiferromagnetic ordering. Such novel properties and functions should not be limited in the rocksalt HEOx. By introducing the concept to correlated electrons in transition-metal oxides, unprecedented electronic and magnetic properties can be anticipated. The correlated transition metal oxides often host competing electronic states and the unique ground state is selected from them with the help of subtle lattice distortion. In HEOx-type correlated oxides, the structural disorder may not allow the system to choose its ground state, leading to exotic fluctuating phases and functionalities. The expected phases/functions include a giant magnetoelectric effect, a high-performance thermoelectricity and an exotic magnetism such as a quantum spin-liquid, which will be the targets of this project.Through the collaboration of two teams, the pioneer of entropy-stabilized materials (the French partner) and the leading group in correlated electron physics (the German partner), we aim to open a new arena in the research on electronic and functional oxides.
该项目致力于探索具有奇异电子和磁性特性的新型高熵氧化物(HEOx)。 HEOx 是最近发现的一类新型材料(C. M. Rost 等人,Nat. Commun. 2015),通过将金属合金中众所周知的高熵材料的概念扩展到氧化物。它们包含至少五种不同的阳离子,并通过高温加热和随后的淬火获得。当温度足够大时,构型熵在吉布斯能中占主导地位,这驱动亚稳态固溶体的形成,而不是焓驱动相。这种熵稳定的氧化物可以通过淬火在室温下冻结。 第一个合成的 HEOx (MgCoNiCuZn)O 具有简单的岩盐结构。有趣的是,一些构成的二元氧化物在岩盐结构中不会结晶,甚至不会形成固溶体。其他类型的具有钙钛矿和尖晶石结构的 HEOx 也已被报道,这表明有大量的材料有待探索。不利的阳离子掺杂剂(例如八面体位点中的 Zn2+)可能会被引入 HEOx 中。 这些使得HEOx在新型氧化物材料的开发中颇具前景。在这个项目中,我们将探索钙钛矿、烧绿石、尖晶石和相关结构的新型 HEOx。HEOx 不仅是材料的矿藏,而且也是意想不到的功能矿藏,部分原因是非常规阳离子排列的局部晶格扭曲。在岩盐型 HEOx 中,我们发现了意想不到的功能,例如巨大的介电响应、锂离子迁移率超过 1 mS/cm 以及长程反铁磁有序性。这种新颖的特性和功能不应仅限于岩盐 HEOx。通过将这一概念引入过渡金属氧化物中的相关电子,可以预期前所未有的电子和磁性特性。相关的过渡金属氧化物通常具有竞争的电子态,并且借助微妙的晶格畸变从中选择独特的基态。在 HEOx 型相关氧化物中,结构无序可能不允许系统选择其基态,从而导致奇异的波动相和功能。 预期的相/功能包括巨磁电效应、高性能热电和量子自旋液体等奇异磁性,这将成为该项目的目标。通过两个团队的合作,熵稳定的先驱材料(法国合作伙伴)和相关电子物理领先小组(德国合作伙伴),我们的目标是在电子和功能氧化物的研究中开辟一个新的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hidenori Takagi其他文献

Professor Dr. Hidenori Takagi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维卤化锇OsMxNy(M/N=F,Cl,Br,I)的电子结构、磁结构及磁激发理论研究
  • 批准号:
    12304079
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维磁晶体Fe3GeTe2和Co3Sn2S2中磁畴结构及其磁相变行为的电子显微研究
  • 批准号:
    12364018
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
固态电子穿梭体耦合弱电/磁刺激强化多氯联苯微生物脱氯的研究
  • 批准号:
    42377020
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
太阳风扰动对内磁层嘶声波的调控及对能量电子的影响
  • 批准号:
    42304183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Locus coeruleus network architecture of Alzheimer's disease vulnerability
阿尔茨海默病脆弱性的蓝斑网络架构
  • 批准号:
    10662875
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
  • 批准号:
    10749588
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10746571
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了