High-Resolution Quantum Gas Microscopy of Ultracold 23Na40K Molecules Trapped in Optical Lattices
光学晶格中捕获的超冷 23Na40K 分子的高分辨率量子气体显微镜
基本信息
- 批准号:421987027
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The promise that quantum computers may solve problems unthinkable for any classical computer has been a leading motivation for physicists over decades to push today’s boundaries of technology further in an effort to harness simultaneously and individually the quantum properties of a large ensemble of particles. During these years, significant conceptual and technological advances have been achieved on several platforms including photons, trapped ions, ultracold atoms, superconducting qubits, and most recently Majorana fermions. However, until the present day no contender has been able to rigorously demonstrate a genuine speedup of quantum over classical devices. We here propose to build a novel multipurpose quantum hardware based on ultracold dipolar 23Na40K molecules trapped in an optical lattice. Ultracold molecules represent a radically new platform which borrows the techniques and scalability from ultracold atoms and combines it with the tunable long-range interactions of dipolar molecules. To study and control the interactions at the single molecule level we will build a molecular quantum gas microscope which remains – so far – an outstanding challenge. One of the difficulties in realizing such a molecular quantum gas microscope is to reach the required number and degeneracy of dipolar bi-alkali molecules. This in turn is limited by the efficiency at which two ultracold atoms can be converted into a so-called Feshbach molecule. We here propose a new pathway of creating molecules in their rovibrational ground state by converting Bose polarons into molecules through a stimulated rapid adiabatic passage (STIRAP). This approach holds promise to significantly enhance the conversion efficiency, potentially allowing the direct creation of a degenerate gas of ultracold molecules. After creation, we will load the ultracold 23Na40K molecules into a single layer of a three-dimensional optical lattice. A high-resolution objective will enable us to image the molecules with single lattice site resolution, thereby opening the doors to study a variety of many-body effects with long-range interaction. We further plan to demonstrate a proof of concept realization of a two-qubit gate by locally controlling the electric dipole moment of individual molecules through tightly focused laser beams. Gaining control over the quantum nature of degenerate dipolar 23Na40K molecules trapped in an optical lattice represents an epitome of a multipurpose quantum hardware ideally suited for quantum computations, quantum simulations, and precision measurements.
量子计算机可以解决任何经典计算机无法想象的问题,这一直是物理学家几十年来进一步突破当今技术界限的主要动机,以努力同时和单独地利用大量粒子集合的量子特性。 ,在包括光子、俘获离子、超冷原子、超导量子位以及最近的马约拉纳费米子在内的多个平台上已经取得了重大的概念和技术进步,但是,直到今天还没有任何竞争者能够严格证明。我们在这里建议构建一种基于光学晶格中的超冷偶极 23Na40K 分子的新型多用途量子硬件,它代表了一个全新的平台,它借用了超冷原子的技术和可扩展性并将其结合起来。为了研究和控制单分子水平上的相互作用,我们将建造一个分子量子气体显微镜,迄今为止这仍然是一个突出的挑战。实现这种分子量子气体显微镜的困难在于达到所需的偶极双碱分子的数量和简并性,这反过来又受到两个超冷原子转化为所谓的费什巴赫分子的效率的限制。这里提出了一种通过受激快速绝热通道(STIRAP)将玻色极化子转化为分子来创建处于旋转基态的分子的新途径,这种方法有望显着提高转换效率,从而有可能实现直接创建。创建后,我们将超冷 23Na40K 分子加载到三维光学晶格的单层中,高分辨率物镜将使我们能够以单晶格位点分辨率对分子进行成像,从而打开。我们进一步计划通过紧密聚焦的激光局部控制单个分子的电偶极矩,展示双量子位门的概念验证实现。控制光晶格中简并偶极 23Na40K 分子的量子性质代表了非常适合量子计算、量子模拟和精密测量的多用途量子硬件的缩影。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demonstration of Quantum Brachistochrones between Distant States of an Atom
- DOI:10.1103/physrevx.11.011035
- 发表时间:2021-02-19
- 期刊:
- 影响因子:12.5
- 作者:Lam, Manolo R.;Peter, Natalie;Alberti, Andrea
- 通讯作者:Alberti, Andrea
Mosaic and non-mosaic protocadherin 19 mutation leads to neuronal hyperexcitability in zebrafish.
- DOI:10.1016/j.nbd.2022.105738
- 发表时间:2022-07
- 期刊:
- 影响因子:6.1
- 作者:Robens, Barbara K.;Yang, Xinzhu;McGraw, Christopher M.;Turner, Laura H.;Robens, Carsten;Thyme, Summer;Rotenberg, Alexander;Poduri, Annapurna
- 通讯作者:Poduri, Annapurna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Carsten Robens其他文献
Dr. Carsten Robens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
自旋-轨道角动量耦合量子气体少体关联和多体激发行为的研究
- 批准号:12374250
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于自旋轨道耦合超冷原子气体的量子棘齿效应研究
- 批准号:12375022
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
低维偶极气体的量子特性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长相互作用力程引发可加性破缺下量子气体的反常物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于量子级联激光技术的开放路径痕量温室气体探测理论与实验研究
- 批准号:42271093
- 批准年份:2022
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
High-resolution structural analysis of huge biomolecule based on gas phase resonance Raman spectroscopy using deep ultraviolet - visible laser excitation
基于深紫外-可见激光激发气相共振拉曼光谱的巨大生物分子高分辨率结构分析
- 批准号:
19K15509 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
High resolution imaging system for quantum gas experiments
用于量子气体实验的高分辨率成像系统
- 批准号:
482495-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Laser spectroscopic instrumentation for isotopic sensing of biogenic Nitric Oxide
用于生物一氧化氮同位素传感的激光光谱仪器
- 批准号:
7943860 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Laser spectroscopic instrumentation for isotopic sensing of biogenic Nitric Oxide
用于生物一氧化氮同位素传感的激光光谱仪器
- 批准号:
8277885 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Laser spectroscopic instrumentation for isotopic sensing of biogenic Nitric Oxide
用于生物一氧化氮同位素传感的激光光谱仪器
- 批准号:
8100194 - 财政年份:2010
- 资助金额:
-- - 项目类别: